
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Batched Neural Bandits
QUANQUAN GU, University of California, Los Angeles, USA

AMIN KARBASI, Yale University, USA
KHASHAYAR KHOSRAVI, Google Research NYC, USA

VAHAB MIRROKNI, Google Research NYC, USA

DONGRUO ZHOU, University of California, Los Angeles, USA

In many sequential decision-making problems, the individuals are split into several batches and the decision-

maker is only allowed to change her policy at the end of batches. These batch problems have a large number of

applications, ranging from clinical trials to crowdsourcing. Motivated by this, we study the stochastic contextual

bandit problem for general reward distributions under the batched setting. We propose the BatchNeuralUCB

algorithm which combines neural networks with optimism to address the exploration-exploitation tradeoff

while keeping the total number of batches limited. We study BatchNeuralUCB under both fixed and adaptive

batch size settings and prove that it achieves the same regret as the fully sequential version while reducing the

number of policy updates considerably. We confirm our theoretical results via simulations on both synthetic

and real-world datasets.

1 INTRODUCTION
In the stochastic contextual bandit problem, a learner sequentially picks actions over 𝑇 rounds

(the horizon). At each round, the learner observes 𝐾 actions, each associated with a 𝑑-dimensional

feature vector. After selecting an action, she receives stochastic reward. Her goal is to maximize the

cumulative reward attained over the horizon. Very often, the learner also receives some form of side

information, so called context, about the arms. Contextual bandits problems have been extensively

studied in the literature [7, 25, 26] and have a vast number of applications such as personalized

news recommendation [28] and healthcare (see Bouneffouf and Rish [6] and references therein).

There has been a large body of work, aiming at designing efficient policies with low regrets when

contexts enjoy extra structures such as linear models [1–3, 12, 13, 28], generalized linear models

[18, 29], and kernel-based models [36, 37]. Recently, neural network models that allow for a more

powerful approximation of the underlying reward functions have been proposed [32, 38, 40, 41].

Notably, the NeuralUCB algorithm [41] can achieve near-optimal regret bounds while only requiring

a mild boundedness assumption on the rewards. However, a major shortcoming of NeuralUCB is

that it requires updating the neural network parameters in every round, as well as optimizing the

loss function over observed rewards and contexts. Due to the large number of parameters of the

neural networks, NeuralUCB is considerably slow for large-scale applications, especially for the

case where the online decision needs to be made quickly [9].

A widely used approach to alleviate such computational burden is to update the model parameters

in batches. Batch learning has been studied in many applications that require limited adaptivity.

Examples include multi-stage clinical trials [31], crowdsourcing platforms [23, 24], active learning

[11, 17], and running time-consuming simulations for reinforcement learning [27]. Specifically,

for simpler models, such as multi-armed bandits and linear contextual bandits, recent works have

studied batched algorithms for both settings [16, 19, 20, 22, 31, 33] where the parameters are updated

at pre-fixed time periods, and rarely switching setting [8, 10, 14, 33, 34] where the parameters are

updated adaptively and can depend on the previous contexts and reward observations. While these

papers provide a complete characterization of the optimal number of policy switches in stochastic

contextual bandit with linear rewards, the extension of results to more general reward functions

remains unstudied.

Manuscript submitted to ACM/IMS Journal of Data Science. Do not distribute.

Batched Neural Bandits2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2

In this paper, we propose a BatchNeuralUCB (BNUCB) algorithm that uses neural networks for es-

timating rewards while keeping the total number of policy updates to be small . BatchNeuralUCB ad-

dresses both limitations described above: (1) it reduces the computational complexity of NeuralUCB,

allowing its usage in large-scale applications, and (2) it limits the number of policy updates, making

it a natural choice for settings that require limited adaptivity. Figure 1 shows the effectiveness of

our proposed BNUCB algorithm in achieving these two points on the Mushroom dataset from

the UCI repository.
1
It is worth noting that while the idea of limiting the number of updates for

neural networks has been used in Riquelme et al. [32], Xu et al. [38] and the experiments of Zhou

et al. [41], no formal results on the number of required batches nor the optimal batch selection

scheme have been shown. Our paper takes the first step and provides a rigorous treatment of these

empirical results. Specifically, we study how the batches should be designed to guarantee good

regret performance, similar to those depicted in Figure 1. Our main contributions are as follows:

• We propose BatchNeuralUCB which, in sharp contrast to NeuralUCB, only updates its network

parameters at most 𝐵 times, where 𝐵 is the number of batches. We propose two update schemes:

the fixed batch scheme where the batch grid is pre-fixed, and the adaptive batch scheme where

the selection of batch grid can depend on previous contexts and observed rewards. When 𝐵 = 𝑇 ,

BatchNeuralUCB degenerates to NeuralUCB.

• We prove that for BatchNeuralUCB with a fixed batch scheme, the regret is bounded by𝑂 (𝑑
√
𝑇 +

𝑑𝑇 /𝐵), where 𝑑 is the effective dimension (See Definition 5.6). For adaptive batch scheme, for any

choice of 𝑞, the regret is bounded by 𝑂 (
√

max{𝑞, (1 +𝑇𝐾)𝑑/𝑞𝐵}𝑑
√
𝑇), where 𝑞 is the parameter

that determines the adaptivity of our algorithm (See Algorithm 1 for details), and 𝐾 is the

number of arms. Therefore, to obtain the same regret as in the fully sequential counterpart,

BatchNeuralUCB only requires Ω(
√
𝑇) for the fixed and Ω(log𝑇) for adaptive batch schemes.

These bounds match the lower bounds presented in the batched linear bandits [20] and rarely

switching linear bandits [33], respectively.

• We carry out numerical experiments over synthetic and real datasets to confirm our theoretical

findings. These experiments demonstrate that in most configurations with fixed and adaptive

schemes, the regret of the proposed BatchNeuralUCB remains close to the regret of the fully

sequential benchmarks, while the number of policy updates and the running time are reduced

significantly.

Technical challenges and innovations To derive our batch-dependent neural bandit regret

bound, we first utilize the recent breakthrough in the Neural Tangent Kernel (NTK) theory [21]

which approximates the overparameterized neural network with a high dimensional linear function

with random feature mappings. Later on, we utilize results from batched linear bandits [20, 33].

The main challenge is that directly applying batched linear bandit results on NTK would yield a

neural network width-dependent regret bound, which is unacceptable in the overparameterized

setting. To address this issue, we provide a more refined analysis and derive a regret bound that

only depends on the effective dimension.

Notations We use lower case letters to denote scalars, lower and upper case bold letters to denote

vectors and matrices. We use ∥ · ∥ to indicate Euclidean norm, and for a semi-positive definite

matrix 𝚺 and any vector x, ∥x∥𝚺 := ∥𝚺1/2x∥ =
√
x⊤𝚺x. We also use the standard𝑂 and Ω notations.

We say 𝑎𝑛 = 𝑂 (𝑏𝑛) if and only if ∃𝐶 > 0, 𝑁 > 0,∀𝑛 > 𝑁, 𝑎𝑛 ≤ 𝐶𝑏𝑛 ; 𝑎𝑛 = Ω(𝑏𝑛) if 𝑎𝑛 ≥ 𝐶𝑏𝑛 . The
notation 𝑂 is used to hide logarithmic factors. Finally, we use the shorthand that [𝑛] to denote the

set of integers {1, ..., 𝑛}.

1
This dataset can be found at https://archive.ics.uci.edu/ml/datasets/mushroom

Batched Neural Bandits3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3

0 500 1000 1500 2000
t

10 3

10 2

10 1

100

101
Pe

r-s
te

p
ex

ec
ut

io
n

tim
e

LinUCB
BNUCB Fixed: B=250, L=2
BNUCB Fixed: B=250, L=3
BNUCB Adaptive: B= 250, log(q)=15, L=2
BNUCB Adaptive: B= 250, log(q)=15, L=3
NeuralUCB, Fully Sequential, L=2

0 50 100 150 200 250 300
Cumulative regret

10 2

10 1

100

101

102

103

Cu
m

ul
at

iv
e

ex
ec

ut
io

n
tim

e

LinUCB
BNUCB Fixed: B=40, L=2
BNUCB Fixed: B=40, L=3
BNUCB Adaptive: B= 40, log(q)=40, L=2
BNUCB Adaptive: B= 40, log(q)=40, L=3
BNUCB Fixed: B=100, L=2
BNUCB Fixed: B=100, L=3
BNUCB Adaptive: B= 100, log(q)=25, L=2
BNUCB Adaptive: B= 100, log(q)=25, L=3
BNUCB Fixed: B=250, L=2
BNUCB Fixed: B=250, L=3
BNUCB Adaptive: B= 250, log(q)=15, L=2
BNUCB Adaptive: B= 250, log(q)=15, L=3
NeuralUCB, Fully Sequential, L=2

Fig. 1. Comparison of regret and execution time of LinUCB [28] and NeuralUCB [41] with the proposed
BatchNeuralUCB (BNUCB) algorithm on the Mushroom dataset. Left: per-step execution time of algorithms
and, right: cumulative execution time vs cumulative regret. In both figures 𝐵 is the number of batches, 𝐿 is
the number of layers of the fully connected neural network and 𝑞 is a tuning parameter of adaptive BNUCB.

2 RELATEDWORK
The literature on the contextual multi-armed problem is vast. Due to the space limitations, we

only review the existing work on batched bandits and bandits with function approximations here

and refer the interested reader to recent monographs by Slivkins et al. [35] and Lattimore and

Szepesvári [26] for a thorough overview.

Batched Bandits. The design of batched multi-armed bandit models can be traced back to UCB2

[4] and Improved-UCB [5] algorithms originally for the fully sequential setting. Perchet et al. [31]

provided the first systematic analysis of the batched stochastic multi-armed bandit problem and

established near-optimal gap-dependent and gap-independent regrets for the case of two arms

(𝐾 = 2). Gao et al. [19] extended this analysis to the general setting of 𝐾 > 2. They proved regret

bounds for both adaptive and non-adaptive grids. Esfandiari et al. [16] improved the gap-dependent

regret bound for the stochastic case and provided lower and upper bound regret guarantees for the

adversarial case. They also establish regret bounds for the batched stochastic linear bandits.

Our work in the batched setting is mostly related to Han et al. [20], Ruan et al. [33]. In particular,

Han et al. [20] studied the batched stochastic linear contextual bandit problem for both adversarial

and stochastic contexts. For the case of adversarial contexts, they show that the number of batches

𝐵 should be at least Ω(
√
𝑑𝑇). Ruan et al. [33] studied the batched contextual bandit problem using

distributional optimal designs and extended the result of [20]. They also studied the minimum

adaptivity needed for the rarely switching contextual bandit problems in both adversarial and

stochastic context settings. In particular, for adversarial contexts, they proved a lower bound of

Ω((𝑑 log𝑇)/log(𝑑 log𝑇)). Our work, however, is different from Han et al. [20], Ruan et al. [33] as

we do not require any assumption on the linearity of the reward functions; similar to NeuralUCB

[41], our regret analysis only requires the rewards to be bounded.

Bandits with Function Approximation. Given the fact that Deep Neural Network (DNN) models

enable the learner to make use of nonlinear models with less domain knowledge, Riquelme et al.

[32], Zahavy and Mannor [39] studied neural-linear bandits. In particular, they used all but the

last layers of a DNN as a feature map, which transforms contexts from the raw input space to a

Batched Neural Bandits4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4

low-dimensional space, usually with better representation and less frequent updates. Then they

learned a linear exploration policy on top of the last hidden layer of the DNN with more frequent

updates. Even though these attempts have achieved great empirical success, they do not provide

any regret guarantees. Zhou et al. [41] proposed NeuralUCB algorithm that uses neural networks

to estimate reward functions while addressing the exploration-exploitation tradeoff using the upper

confidence bound technique. Zhang et al. [40] extended their analysis to Thompson Sampling.

Xu et al. [38] proposed Neural-LinUCB which shares the same spirit as neural-linear bandits and
proved 𝑂 (

√
𝑇) regret bound.

3 PROBLEM SETTING
In this section, we present the technical details of our model and our problem setting.

Model. We consider the stochastic𝐾-armed contextual bandit problem, where the total number of

rounds𝑇 is known. At round 𝑡 ∈ [𝑇], the learner observes the context consisting of𝐾 feature vectors:

{x𝑡,𝑎 ∈ R𝑑 | 𝑎 ∈ [𝐾]}. For brevity, we denote the collection of all contexts {x1,1, x1,2, . . . , x𝑇,𝐾 } by
{x𝑖 }𝑇𝐾𝑖=1

.

Reward. Upon selecting an action 𝑎𝑡 , she receives a stochastic reward 𝑟𝑡,𝑎𝑡 . In this work, we make

the following assumption about reward generation: for any round 𝑡 ,

𝑟𝑡,𝑎𝑡 = ℎ(x𝑡,𝑎𝑡) + b𝑡 , (3.1)

where ℎ is an unknown function satisfying 0 ≤ ℎ(x) ≤ 1 for any x, and b𝑡 is a-sub-Gaussian noise

conditioned on x1,𝑎1
, . . . , x𝑡−1,𝑎𝑡−1

satisfying E[b𝑡 |x1,𝑎1
, . . . , x𝑡−1,𝑎𝑡−1

] = 0.

Goal. The learner wishes to maximize the following pseudo regret (or regret for short): 𝑅𝑇 =∑𝑇
𝑡=1
[ℎ(x𝑡,𝑎∗𝑡) − ℎ(x𝑡,𝑎𝑡)], where 𝑎

∗
𝑡 = argmax𝑎∈[𝐾] ℎ(x𝑡,𝑎) is the optimal action at round 𝑡 that

maximizes the expected reward.

Reward Estimation. In order to learn the reward function ℎ in Eq. (3.1), we propose to use a fully

connected neural networks with depth 𝐿 ≥ 2:

𝑓 (x;𝜽) =
√
𝑚W𝐿𝜎

(
W𝐿−1𝜎

(
· · ·𝜎 (W1x)

))
, (3.2)

where 𝜎 (𝑥) = max{𝑥, 0} is the rectified linear unit (ReLU) activation function,W1 ∈ R𝑚×𝑑 ,W𝑖 ∈
R𝑚×𝑚, 2 ≤ 𝑖 ≤ 𝐿 − 1,W𝐿 ∈ R𝑚×1

, and 𝜽 = [vec(W1)⊤, . . . , vec(W𝐿)⊤]⊤ ∈ R𝑝 with 𝑝 = 𝑚 +𝑚𝑑 +
𝑚2 (𝐿 − 1). Without loss of generality, we assume that the width of each hidden layer is the same

(i.e.,𝑚) for convenience in the analysis. We denote the gradient of the neural network function by

g(x;𝜽) = ∇𝜽 𝑓 (x;𝜽) ∈ R𝑝 .
Batch Setting. In this work, we consider the batch bandits setting in which the entire horizon

of 𝑇 rounds is divided into 𝐵 batches. Formally, we define a grid T = {𝑡0, 𝑡1, · · · , 𝑡𝐵}, where
1 = 𝑡0 < 𝑡1 < 𝑡2 < · · · < 𝑡𝐵 = 𝑇 + 1 are the start and end rounds of the batches. Here, the interval

[𝑡𝑏−1, 𝑡𝑏) indicates the rounds belonging to batch 𝑏 ∈ [𝐵]. The learner selects her policy at the

beginning of each batch and executes it for the entire batch. She observes all collected rewards

at the end of this batch and then updates her policy for the next batch. The batch model consists

of two specific schemes. In the fixed batch size scheme, the points in the grid T are pre-fixed and

cannot be altered during the execution of the algorithm. In the adaptive batch size scheme, however,
the beginning and the end rounds of each batch are decided dynamically by the algorithm.

4 ALGORITHMS
We propose our algorithm BatchNeuralUCB in this section. In essence, BatchNeuralUCB uses

a neural network 𝑓 (x;𝜽) to predict the reward of the context x and upper confidence bounds

computed from the network to guide the exploration [3]. Note that BatchNeuralUCB does not

Batched Neural Bandits5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5

Algorithm 1 BatchNeuralUCB

Require: A neural network 𝑓 (x;𝜽) initialized with parameter 𝜽0, batch number 𝐵, ratio parameter

𝑞 (only needed for adaptive batch size), regularization parameter _, step size [, number of

gradient descent steps 𝐽

1: Z1 = _I, 𝑏 = 0, 𝑡0 = 1

2: for 𝑡 = 1, . . . ,𝑇 do
3: if

Fixed Batch Size Scheme:, 𝑡 = 𝑏 · ⌊𝑇 /𝐵⌋ + 1 (4.1)

Adaptive Batch Size Scheme:, det(Z𝑡) > 𝑞 · det(Z𝑡𝑏) and 𝑏 ≤ 𝐵 − 2, (4.2)

then
4: 𝑏 ← 𝑏 + 1, 𝑡𝑏 ← 𝑡

5: Observe rewards {𝑟𝑖,𝑎𝑖 }
𝑡𝑏−1

𝑖=𝑡𝑏−1

corresponding to contexts {x𝑖,𝑎𝑖 }
𝑡𝑏−1

𝑖=𝑡𝑏−1

6: 𝜽𝑏 ← TrainNN(_, [, 𝐽 ,𝑚, {x𝑖,𝑎𝑖 }
𝑡𝑏−1

𝑖=1
, {𝑟𝑖,𝑎𝑖 }

𝑡𝑏−1

𝑖=1
, 𝜽0)

7: 𝑓𝑏 (·) ← 𝑓 (·;𝜽𝑏) + 𝛽𝑡𝑏
√
g(·;𝜽𝑏)⊤Z−1

𝑡𝑏
g(·;𝜽𝑏)/𝑚,

8: end if
9: Receive {x𝑡,𝑎}𝐾𝑎=1

10: Select 𝑎𝑡 ← argmax𝑎∈[𝐾] 𝑓𝑏 (x𝑡,𝑎)
11: Set Z𝑡+1 ← Z𝑡 + g(x𝑡,𝑎𝑡 ;𝜽𝑏)g(x𝑡,𝑎𝑡 ;𝜽𝑏)⊤/𝑚
12: end for
13: 𝑡𝑏+1 = 𝑇 + 1

Algorithm 2 TrainNN [41]

Require: Regularization parameter _, step size [, number of gradient descent steps 𝐽 , network

width𝑚, actions {x𝑡 }, rewards {𝑟𝑡 }, initial parameter 𝜽 (0) .
1: Define L(𝜽) = ∑𝑡

𝑖=1
(𝑓 (x𝑖 ;𝜽) − 𝑟𝑖)2/2 +𝑚_∥𝜽 − 𝜽 (0) ∥22/2.

2: for 𝑗 = 0, . . . , 𝐽 − 1 do
3: 𝜽 (𝑗+1) ← 𝜽 (𝑗) − [∇L(𝜽 (𝑗))
4: end for

Ensure: 𝜽 (𝐽) .

update its parameter 𝜽 at each round. Instead, BatchNeuralUCB specifies either a fixed or adaptive

batch grid T = {𝑡0, 𝑡1, . . . , 𝑡𝐵}. At the beginning of the 𝑏-th batch, the algorithm updates the

parameter 𝜽 of the neural network to 𝜽𝑏 by performing gradient descent with step size [for 𝐽

steps over a regularized square loss trained on all observed contexts and rewards, starting from the

initial parameter 𝜽0. Then Algorithm 2 takes the 𝐽 -th iterate 𝜽 (𝐽) generated by gradient descent as

its output to BatchNeuralUCB. The training procedure is described in Algorithm 2.

Meanwhile, within each batch, BatchNeuralUCB maintains the covariance matrix Z𝑡𝑏 which is

calculated over the gradients of the observed contexts, each taken with respect to the estimated

parameter of the neural network at the beginning of that contexts’ corresponding batch. Based on

𝜽𝑏 and Z𝑡𝑏 , BatchNeuralUCB calculates the UCB estimate of reward 𝑓𝑏 (·), as Line 7 in Algorithm 1

suggests. The function 𝑓𝑏 (·) is used to select actions during the 𝑏-th batch. In particular, at round 𝑡 ,

BatchNeuralUCB receives contexts {x𝑡,𝑎}𝐾𝑎=1
and picks 𝑎𝑡 which maximizes the optimistic reward

𝑓𝑏 (𝑥𝑡,𝑎) (see Line 10). Once this batch finishes, the rewards 𝑟𝑡,𝑎𝑡 collected during this batch are

observed (Line 5), and the process continues.

Batched Neural Bandits6

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6

We compare BatchNeuralUCB with several related algorithms. BatchNeuralUCB is similar to

NeuralUCB [41], except that BatchNeuralUCB only updates its parameter in batch and NeuralUCB

updates its parameter per round. The batch update scheme greatly reduces the total computational

complexity of BatchNeuralUCB. Meanwhile, it is worth noting that arm elimination-based algo-

rithms for linear bandits algorithm [16] also updates its parameter in batch. However, their proposed

algorithm works only for fixed action sets and linear rewards. In contrast, our BatchNeuralUCB

deals with the general case where the action sets can change over time and when the interaction

between the contexts and rewards are nonlinear.

4.1 Fixed Batch Size Scheme
For the fixed batch scheme, BatchNeuralUCB predefines the batch grid T = {𝑡0, 𝑡1, . . . 𝑡𝐵} as a
deterministic set depending on the time horizon 𝑇 and number of batches 𝐵.

In particular, BatchNeuralUCB selects the simple uniform batch grid, with 𝑡𝑏 = 𝑏 · ⌊𝑇 /𝐵⌋ + 1,

as suggested in Eq. (4.1). It is easy to see that when 𝐵 = 𝑇 , BatchNeuralUCB updates the network

parameters at each round, reducing to NeuralUCB. [20] also studied the fixed batch size scheme,

but for the linear reward.

4.2 Adaptive Batch Size Scheme
Unlike the fixed batch size scheme, in the adaptive batch size scheme, BatchNeuralUCB does not

predefine the batch grid. Instead, it dynamically selects the batch grids based on the previous

observations. Specifically, at any time 𝑡 , the algorithm calculates the determinant of the covariance

matrix and keeps track of its ratio to the determinant of the covariance matrix calculated at the

end of the previous batch. If this ratio is larger than a hyperparameter 𝑞 and the number of utilized

batches is less than the budget 𝐵, then BatchNeuralUCB starts a new batch. This idea used in the

adaptive batch size scheme is similar to the rarely switching updating rule introduced in Abbasi-

Yadkori et al. [1] for linear bandits. The difference is that while Abbasi-Yadkori et al. [1] applies

this idea directly to the contexts {x𝑖 }𝑖 , Algorithm 1 applies it to the gradient mapping of contexts.

5 MAIN RESULTS
In this section, we propose our main theoretical results about Algorithm 1. First, we propose the

definition of the neural tangent kernel (NTK) matrix [21]. Similar definition has also been made in

Zhou et al. [41].

Definition 5.1. Let {x𝑖 }𝑇𝐾𝑖=1
be a set of contexts. Define

H̃(1)
𝑖, 𝑗

= 𝚺
(1)
𝑖, 𝑗

= ⟨x𝑖 , x𝑗 ⟩, A(𝑙)
𝑖, 𝑗

=

(
𝚺
(𝑙)
𝑖,𝑖

𝚺
(𝑙)
𝑖, 𝑗

𝚺
(𝑙)
𝑖, 𝑗

𝚺
(𝑙)
𝑗, 𝑗

)
,

𝚺
(𝑙+1)
𝑖, 𝑗

= 2E(𝑢,𝑣)∼𝑁 (0,A(𝑙)
𝑖,𝑗
) [𝜎 (𝑢)𝜎 (𝑣)] ,

H̃(𝑙+1)
𝑖, 𝑗

= 2H̃(𝑙)
𝑖, 𝑗
E(𝑢,𝑣)∼𝑁 (0,A(𝑙)

𝑖,𝑗
) [𝜎

′(𝑢)𝜎 ′(𝑣)] + 𝚺(𝑙+1)
𝑖, 𝑗

.

Then, H = (H̃(𝐿) + 𝚺(𝐿))/2 is called the neural tangent kernel (NTK) matrix on the context set {x𝑖 }𝑖 .
For simplicity, let h ∈ R𝑇𝐾 denote the vector (ℎ(x𝑖))𝑇𝐾𝑖=1

.

In general, the NTK gram matrixH describes the relationship between each pair of contexts x𝑖 , x𝑗

which we will face during the decision making process, with the help of a neural network function

mapping. Specifically, the (𝑖, 𝑗)-th entry of H denotes the cosine distance between g(x𝑖), g(x𝑗)
when the width𝑚 goes to infinity, which is,H𝑖, 𝑗 = lim𝑚→∞⟨g(x𝑖), g(x𝑗)⟩/𝑚. We need the following

assumption over the NTK gram matrix H.

Batched Neural Bandits7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7

Assumption 5.2. The NTK matrix satisfies H ⪰ _0I.
Remark 5.3. Assumption 5.2 suggests that the NTK matrix H is non-singular. Such a requirement

can be guaranteed as long as no two contexts in {x𝑖 }𝑖 are parallel [15].
We also need the following assumption over the initialized parameter 𝜽0 and the contexts x𝑖 .

Assumption 5.4. For any 1 ≤ 𝑖 ≤ 𝑇𝐾 , the context x𝑖 satisfies ∥x𝑖 ∥2 = 1 and [x𝑖] 𝑗 = [x𝑖] 𝑗+𝑑/2.
Meanwhile, the initial parameter 𝜽0 = [vec(W1)⊤, . . . , vec(W𝐿)⊤]⊤ is initialized as follows: for

1 ≤ 𝑙 ≤ 𝐿 − 1, W𝑙 is set to

(
W 0
0 W

)
, where each entry of W is generated independently from

𝑁 (0, 4/𝑚); W𝐿 is set to (w⊤,−w⊤), where each entry of w is generated independently from

𝑁 (0, 2/𝑚).
Remark 5.5. Assumption 5.4 suggests that the context x𝑖 and the initial parameter 𝜽0 should be

‘symmetric’ considering each coordinate. It can be verified that under such an assumption, for any

𝑖 ∈ [𝑇𝐾] we have 𝑓 (x𝑖 ;𝜽0) = 0, which is crucial to our analysis. Meanwhile, for any context x that

does not satisfy the assumption, we can always construct a satisfying new context x′ by setting

x′ = [x⊤, x⊤]⊤/
√

2.

We also need the following definition of the effective dimension, which has been adapted in

Srinivas et al. [36], Valko et al. [37], Zhou et al. [41].

Definition 5.6. The effective dimension 𝑑 of the neural tangent kernel matrix on contexts {x𝑖 }𝑇𝐾𝑖=1

is defined as

𝑑 =
log det(I + H/_)
log(1 +𝑇𝐾/_) .

Remark 5.7. The notion of effective dimension 𝑑 is similar to the information gain introduced in

Srinivas et al. [36] and effective dimension introduced in Valko et al. [37]. Intuitively, 𝑑 measures

how quickly the eigenvalues of H diminish, and it will be upper bounded by the dimension of the

RKHS space spanned by H [41].

The following two theorems characterize the regret bounds of BatchNeuralUCB under two

different update schemes. We first show the regret bound of BatchNeuralUCB under the fixed batch

size update scheme.

Theorem5.8. SupposeAssumptions 5.2 and 5.4 hold. Setting𝑚 = poly(𝑇, 𝐿, 𝐾, _−1, _−1

0
, 𝑆−1, log(1/𝛿))

and _ ≥ 𝑆−2
, where 𝑆 is a parameter satisfying 𝑆 ≥

√
2h⊤H−1h. There exist positive constants

𝐶1,𝐶2,𝐶3 such that, if

𝛽𝑡 = 𝐶1

[(
a

√
log

detZ𝑡
det _I

− 2 log𝛿 +
√
_𝑆

)
+ (_ + 𝑡𝐿) (1 − [𝑚_) 𝐽 /2

√
𝑡/_

]
,

𝐽 = 2 log(_𝑆/(
√
𝑇_ +𝐶2𝑇

3/2𝐿))𝑇𝐿/_, [= 𝐶3 (𝑚𝑇𝐿 +𝑚_)−1
, then with probability at least 1 − 𝛿 , the

regret of Algorithm 1 with fixed batch size scheme is bounded as follows:

𝑅𝑇 = 𝑂

((
a𝑑 +

√
_𝑑𝑆

)√
𝑇 + 𝑑𝑇 /𝐵

)
.

Here we provide a proof sketch of Theorem 5.8 to show the main technical challenges in deriving

the regret bound of batched neural bandits.

Proof sketch of Theorem 5.8. To derive the batch-dependent regret bound 𝑅𝑇 , we define the

following set C:

C = {𝑏 ∈ {0, · · · , 𝐵 − 1} : det(Z𝑡𝑏+1)/det(Z𝑡𝑏) > 2}.

Batched Neural Bandits8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8

Then it is easy to verify that for every 𝑏 ∉ C and 𝑡𝑏 ≤ 𝑡 < 𝑡𝑏+1 − 1, det(Z𝑡)/det(Z𝑡𝑏) ≤ 2. We can

bound |C| as follows:

det(Z𝑇+1)
det(_I) =

𝐵−1∏
𝑏=0

det(Z𝑡𝑏+1)
det(Z𝑡𝑏)

(a)

≥
∏
𝑏∈C

det(Z𝑡𝑏+1)
det(Z𝑡𝑏)

(b)

≥ 2
|C |,

where (a) holds since Z𝑡𝑏+1 ⪰ Z𝑡𝑏 and (b) holds due to the definition of C. Based on C, we decompose

the regret as follows.

𝑅𝑇 =

(∑
𝑏∈C︸︷︷︸
𝐼1

+
∑
𝑏∉C︸︷︷︸
𝐼2

) 𝑡𝑏+1−1∑
𝑡=𝑡𝑏

[ℎ
(
x𝑡,𝑎∗𝑡

)
− ℎ

(
x𝑡,𝑎𝑡

)
],

Here, 𝐼1 = 𝑂 (|C|𝑇 /𝐵) due to the fact that 0 ≤ ℎ ≤ 1, and 𝐼2 can be bounded as

𝐼2
(a)

= 𝑂

(
𝛽𝑇

∑
𝑏∉C

𝑡𝑏+1−1∑
𝑡=𝑡𝑏

min

{
∥g(x𝑡,𝑎𝑡 ;𝜽𝑡)/

√
𝑚∥Z−1

𝑡
, 1

})
(b)

= 𝑂

(
𝛽𝑇

√
𝑇 log

detZ𝑇+1
det _I

)
,

where (a) holds due to the definition of C and the neural network function approximation lemma

(See Lemma 7.1), (b) holds due to the elliptical potential lemma (See Lemma 7.3) and Cauchy-Schwarz

inequality. Therefore, we have

𝑅𝑇 = 𝑂

(
2 log

det(Z𝑇+1)
det(_I) 𝑇 /𝐵 + 𝛽𝑇

√
𝑇 log

detZ𝑇+1
det _I

)
.

Finally, by the definition of effective dimension, we have log(detZ𝑇 /log _I) = 𝑂 (𝑑) and 𝛽𝑇 =

𝑂 (a
√

log(detZ𝑇 /log _I) +
√
_𝑆) = 𝑂 (a

√
𝑑 +
√
_𝑆), which completes the proof. □

Remark 5.9. Suppose ℎ belongs to the RKHS space of NTK kernelH with a finite RKHS norm

∥ℎ∥H , then
√
h⊤H−1h ≤ ∥ℎ∥H (Appendix A.2, Zhou et al. 41). Therefore, by treating a as a constant

and setting 𝑆 =
√

2∥ℎ∥H , _ = 𝑆−2
, the regret is on the order 𝑂 (𝑑

√
𝑇 + 𝑑𝑇 /𝐵). This suggests setting

𝐵 =
√
𝑇 in order to obtain the standard regret 𝑂 (𝑑

√
𝑇).

Remark 5.10. Han et al. [20] proposed a lower bound on the regret of 2-armed linear bandits with

𝑑-dimensional contexts, which suggests that for any algorithm with a fixed 𝐵-batch size scheme,

the regret is no less than

Ω(
√
𝑑𝑇 +min{𝑇

√
𝑑/𝐵,𝑇 /

√
𝐵}) . (5.1)

Eq. (5.1) shows that to obtain an 𝑂 (
√
𝑇)-regret, at least Ω(

√
𝑇) number of batches are needed,

which implies that our choice of 𝐵 as

√
𝑇 is tight.

We have the following theorem for Algorithm 1 under the adaptive batch size scheme.

Theorem 5.11. Suppose Assumptions 5.2 and 5.4 hold. Let 𝑆, _, 𝐽 , [, {𝛽𝑡 } be selected as in Theorem

5.8. Then with probability at least 1 − 𝛿 , the regret of Algorithm 1 with the adaptive batch size

scheme can be bounded by

𝑅𝑇 = 𝑂

(√
max{𝑞, (1 +𝑇𝐾/_)𝑑/𝑞𝐵}

(
a𝑑 +

√
_𝑑𝑆

)√
𝑇

)
.

Remark 5.12. By treating a as a constant and assuming that ℎ belongs to the RKHS space of NTK

kernelH with a finite RKHS norm ∥ℎ∥H , and by setting 𝑆 and _ as Remark 5.9 suggests, the regret

is bounded by 𝑂 (
√

max{𝑞, (1 +𝑇𝐾)𝑑/𝑞𝐵}𝑑
√
𝑇).

Batched Neural Bandits9

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

9

Remark 5.13. To achieve an 𝑂 (𝑑
√
𝑇) regret, here 𝐵 needs to be chosen as Ω(𝑑 log(1 + 𝑇𝐾/_))

and 𝑞 = Θ̃((1 +𝑇𝐾/_)𝑑/𝐵). As a comparison, for the linear bandits case, Ruan et al. [33] has shown

that an 𝑂 (𝑑 log𝑑 log𝑇) number of batches is necessary to achieve a 𝑂 (
√
𝑇) regret. Therefore, our

choice of 𝐵 as 𝑑 log(𝑇) is tight up to a log𝑑 factor.

6 NUMERICAL EXPERIMENTS
In this section, we run numerical experiments on both synthetically generated and real data to

validate our theoretical findings.

6.1 Synthetic Data
We compare the performance of our proposed BatchNeuralUCB (BNUCB) algorithm with fixed

and adaptive size batches for several values of 𝐵 and 𝑞 with two fully sequential benchmarks on

synthetic data generated as follows. The fully sequential benchmarks considered are: (1) LinUCB

algorithm [28] and (2) NeuralUCB algorithm [41]. We run our experiments on two different reward

functions.

• Cosine Reward. Consider the cosine reward function given by 𝑟𝑡,𝑎 = cos(3x⊤𝑡,𝑎𝜽 ∗) + b𝑡 where
{x𝑡,1, x𝑡,2, · · · , x𝑡,𝐾 } are contexts generated at time 𝑡 according to𝑈 [0, 1]𝑑 independent of each
other. The parameter 𝜽 ∗ is the unknown parameter of model that is generated according to

𝑈 [0, 1]𝑑 , normalized to satisfy ∥𝜽 ∗∥2 = 1. The noise b𝑡 is generated according to 𝑁 (0, 0.25)
independent of all other variables. We choose 𝑑 = 10 and 𝐾 = 4.

• Quadratic Reward. Consider the quadratic reward function given by 𝑟𝑡,𝑎 = x⊤𝑡,𝑎A
⊤Ax𝑡,𝑎 + b𝑡

where {x𝑡,1, x𝑡,2, · · · , x𝑡,𝐾 } are contexts generated at time 𝑡 according to 𝑈 [0, 1]𝑑 independent

of each other. Each entry of the matrix A ∈ R𝑑×𝑑 is generated according to 𝑁 (0, 1). The noise
b𝑡 is generated according to 𝑁 (0, 0.25) independent of all other variables. We choose 𝑑 = 4 and

𝐾 = 10.

Hyperparameter Tuning. We select parameters as follows. For LinUCB, we search over the

regularization parameter _ ∈ {0.001, 0.01, 0.1, 1} and exploration parameter 𝛽 ∈ {0.001, 0.01, 0.1, 1}
and pick the best hyperparameter configuration. We provide the selected hyperparameters of

NeuralUCB and BatchNeuralUCB for cosine reward and quadratic reward respectively as follows.

• Cosine Reward. For NeuralUCB and BatchNeuralUCB, we train two-layers neural networks

with𝑚 = 200 hidden layers. For both of these algorithms, we find that choosing parameters

_ = 0.01 and 𝛽𝑡 = 0.001 can have very good performance. Finally, in the iterations where the

policy is updated, the parameters of neural networks are updated for 𝐽 = 200 iterations using

stochastic gradient descent with [= 0.01.

• Quadratic Reward. For NeuralUCB and BatchNeuralUCB, we train two-layers neural networks

with 𝑚 = 100 hidden units. For both of these algorithms, we find that choosing parameters

_ = 0.01 and 𝛽𝑡 = 0.01 can have very good performance. Finally, in the iterations where the

policy is updated, the parameters of neural networks are updated for 𝐽 = 200 iterations using

stochastic gradient descent with [= 0.005.

We choose 𝑇 = 2000 and repeat the experiments for 10 times and generate the box plot of the

total regret of algorithms together with its standard deviation.

Results. The per-instance regret results for cosine reward and quadratic reward are depicted in

Figures 2 and 3 respectively. Figure 4 shows the scatter plot of regret vs execution time in second

for 5 instances (selected randomly out of all 10 repeated experiments) for all algorithms.

We can make the following observations. Due to model misspecifications, LinUCB does not

perform very well on both rewards. Our proposed BNUCB works pretty well in both fixed and

Batched Neural Bandits10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

B=40

102

103 LinUCB
NeuralUCB, Fully Sequential
BNUCB Fixed
BNUCB Adaptive: log(q)=40
BNUCB Adaptive: log(q)=50
BNUCB Adaptive: log(q)=60

B=100

LinUCB
NeuralUCB, Fully Sequential
BNUCB Fixed
BNUCB Adaptive: log(q)=20
BNUCB Adaptive: log(q)=25
BNUCB Adaptive: log(q)=30

B=200

LinUCB
NeuralUCB, Fully Sequential
BNUCB Fixed
BNUCB Adaptive: log(q)=10
BNUCB Adaptive: log(q)=15
BNUCB Adaptive: log(q)=20

Fig. 2. Distribution of per-instance regret on Synthetic data. The solid and dashed lines indicate the median
and the mean respectively. Note that BNUCB stands for BatchNeuralUCB and also that the regrets are
plotted on the log scale.

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

B=400

200

400

600

800

1000
LinUCB
NeuralUCB, Fully Sequential
BNUCB Fixed
BNUCB Adaptive: log(q)=20
BNUCB Adaptive: log(q)=25
BNUCB Adaptive: log(q)=30

B=100

LinUCB
NeuralUCB, Fully Sequential
BNUCB Fixed
BNUCB Adaptive: log(q)=10
BNUCB Adaptive: log(q)=15
BNUCB Adaptive: log(q)=20

B=200

LinUCB
NeuralUCB, Fully Sequential
BNUCB Fixed
BNUCB Adaptive: log(q)=5
BNUCB Adaptive: log(q)=10
BNUCB Adaptive: log(q)=15

Fig. 3. Distribution of per-instance regret on Synthetic data with quadratic reward. The solid and dashed
lines indicate the median and the mean respectively. Note that BNUCB stands for BatchNeuralUCB.

adaptive schemes, while keeping the total number of policy updates and also the running time

small. In particular, the adaptive BatchNeuralUCB algorithm with only 𝐵 = 40 batches and all

configurations for 𝑞, i.e. log(𝑞) = 20, 25, 30, outperforms LinUCB and achieves a very close perfor-

mance to that of NeuralUCB while enjoying a very fast execution time. The gap in the regret with

the fully sequential NeuralUCB algorithm becomes smaller for configurations with 𝐵 = 100 and it

becomes almost insignificant for 𝐵 = 200. At the same time, the number of policy updates and also

execution times of all configurations of BNUCB for all pairs of (𝐵, 𝑞) are almost ten times smaller

than the fully sequential version. The last observation is that, for a given batch size 𝐵, the adaptive

batch scheme configurations have better performance compared to the fixed ones.

6.2 Real Data
We repeat the above experiments this time using two real datasets: Mushroom andMagic Telescope

2
,

both from the UCI repository originally designed for the classification task. For each sample

in a dataset 𝑠𝑡 = (𝑐𝑡 , 𝑙𝑡) with context 𝑐𝑡 ∈ R𝑑 and label 𝑙𝑡 ∈ [𝐾], we consider the zero-one

2
This dataset can be found at http://archive.ics.uci.edu/ml/datasets/MAGIC+GAMMA+Telescope

Batched Neural Bandits11

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11

101 102 103

Execution Time(s)

102

103

Re
gr

et

LinUCB
NeuralUCB, Fully Sequential
BNUCB Fixed: B=40
BNUCB Adaptive: B=40, log(q)=40
BNUCB Adaptive: B=40, log(q)=50
BNUCB Adaptive: B=40, log(q)=60
BNUCB Fixed: B=100
BNUCB Adaptive: B=100, log(q)=20
BNUCB Adaptive: B=100, log(q)=25
BNUCB Adaptive: B=100, log(q)=30
BNUCB Fixed: B=200
BNUCB Adaptive: B=200, log(q)=10
BNUCB Adaptive: B=200, log(q)=15
BNUCB Adaptive: B=200, log(q)=20

(a) Cosine

101 102 103

Execution Time(s)

102

6 × 101

2 × 102

3 × 102

4 × 102

Re
gr

et

LinUCB
BNUCB Fixed: B=40, L=2
BNUCB Fixed: B=40, L=3
BNUCB Adaptive: B=40, log(q)=40, L=2
BNUCB Adaptive: B=40, log(q)=40, L=3
BNUCB Fixed: B=100, L=2
BNUCB Fixed: B=100, L=3
BNUCB Adaptive: B=100, log(q)=25, L=2
BNUCB Adaptive: B=100, log(q)=25, L=3
BNUCB Fixed: B=250, L=2
BNUCB Fixed: B=250, L=3
BNUCB Adaptive: B=250, log(q)=15, L=2
BNUCB Adaptive: B=250, log(q)=15, L=3
NeuralUCB, Fully Sequential, L=2
NeuralTS, L=2
Neural-LinUCB, L=2

(b) Quadratic

Fig. 4. Scatter plot of regret vs execution time for 5 instances selected at random on synthetic data with
synthetic reward.

0 250 500 750 1000 1250 1500 1750 2000
t

0

50

100

150

200

250

300

350

400

Cu
m

ul
at

iv
e

Re
gr

et

LinUCB
BNUCB Fixed: B=40, L=2
BNUCB Fixed: B=40, L=3
BNUCB Adaptive: B=40, log(q)=40, L=2
BNUCB Adaptive: B=40, log(q)=40, L=3
BNUCB Fixed: B=100, L=2
BNUCB Fixed: B=100, L=3
BNUCB Adaptive: B=100, log(q)=25, L=2

BNUCB Adaptive: B=100, log(q)=25, L=3
BNUCB Fixed: B=250, L=2
BNUCB Fixed: B=250, L=3
BNUCB Adaptive: B=250, log(q)=15, L=2
BNUCB Adaptive: B=250, log(q)=15, L=3
NeuralUCB, Fully Sequential, L=2
NeuralTS, L=2
Neural-LinUCB, L=2

(a) Mushroom

0 250 500 750 1000 1250 1500 1750 2000
t

0

50

100

150

200

250

300

350

400

Cu
m

ul
at

iv
e

Re
gr

et

LinUCB
BNUCB Fixed: B=40, L=2
BNUCB Fixed: B=40, L=3
BNUCB Adaptive: B=40, log(q)=40, L=2
BNUCB Adaptive: B=40, log(q)=40, L=3
BNUCB Fixed: B=100, L=2
BNUCB Fixed: B=100, L=3
BNUCB Adaptive: B=100, log(q)=25, L=2

BNUCB Adaptive: B=100, log(q)=25, L=3
BNUCB Fixed: B=250, L=2
BNUCB Fixed: B=250, L=3
BNUCB Adaptive: B=250, log(q)=15, L=2
BNUCB Adaptive: B=250, log(q)=15, L=3
NeuralUCB, Fully Sequential, L=2
NeuralTS, L=2
Neural-LinUCB, L=2

(b) Magic Telescope

Fig. 5. Cumulative regret of algorithms on two real datasets. Note that BNUCB stands for BatchNeuralUCB,
our proposed algorithm (Algorithm 1).

reward defined as 𝑟𝑡,𝑎𝑡 = 1{𝑎𝑡 = 𝑙𝑡 } and generate our context vectors as {x𝑡,𝑎 ∈ R𝐾𝑑 : x𝑡,𝑎 =

[0, · · · , 0︸ ︷︷ ︸
𝑎−1 times

, 𝑐𝑖 , 0, · · · , 0︸ ︷︷ ︸
𝐾−𝑎 times

], 𝑎 ∈ [𝐾]}.

For each dataset, we repeat the experiment for 10 times and report the mean cumulative regret

and its confidence intervals for LinUCB, NeuralUCB, NeuralTS [40], Neural-LinUCB [38] and

the proposed BatchNeuralUCB for several configurations of parameters. For each instance, we

select 𝑇 = 2000 random samples without replacement from the dataset and run all algorithms on

that instance. Note that in this simulation, NeuralUCB, NeuralTS use two-layer neural networks

with𝑚 = 100 hidden units per layer, while Neural-LinearUCB uses a two-layer neural networks

Batched Neural Bandits12

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

12

with𝑚 = 800 hidden units. Our proposed BatchNeuralUCB uses two-layer or three-layer neural

networks with𝑚 = 100 hidden units.

Hyperparameter Tuning. We select the parameters as follows. For LinUCB, we search over the

space of regularization parameters _ ∈ {0.001, 0.01, 0.1, 1} and the exploration parameter 𝛽𝑡 ∈
{0.001, 0.01, 0.1, 1} and select the hyperparameters with the lowest average regret. For NeuralUCB

and NeuralTS algorithms, we consider two-layer neural networks with𝑚 = 100 hidden units. For

BatchNeuralUCB, we consider both 𝐿 = 2 and 𝐿 = 3 layers fully connected neural networks with

𝑚 = 100 hidden units in each layer. For Neural-LinUCB we use a two-layer neural network with

𝑚 = 800 hidden layers. For all algorithms with the exception of Neural-LinUCB, during iterations

that policy update is allowed (at the end of batches for BatchNeuralUCB and every iteration for

NeuralUCB), we use stochastic gradient descent with 𝐽 = 200 iterations to update the network

parameters. For Neural-LinUCB, 𝐽 = 100 is selected. The learning rate of BatchNeuralUCB is

selected as [= 0.02 for MagicTelescope and [= 0.05 for the Mushroom dataset. For NeuralUCB

and NeuralTS, [= 0.02 is selected on the MagicTelescope and [= 0.01 for the Mushroom dataset.

Finally, for Neural-LinUCB, [= 0.01 on theMagicTelescope and [= 0.002 on theMushroomDataset

are selected. For BatchNeuralUCB, we find that choosing parameters _ = 0.001 and 𝛽𝑡 = 0.001

works well, while for NeuralUCB, NeuralTS, and Neural-LinUCB we search over _ ∈ {0.001, 0.01}
and 𝛽𝑡 ∈ {0.0001, 0.001}.

101 102 103

Execution Time(s)

102

6 × 101

2 × 102

3 × 102

4 × 102

Re
gr

et

LinUCB
BNUCB Fixed: B=40, L=2
BNUCB Fixed: B=40, L=3
BNUCB Adaptive: B=40, log(q)=40, L=2
BNUCB Adaptive: B=40, log(q)=40, L=3
BNUCB Fixed: B=100, L=2
BNUCB Fixed: B=100, L=3
BNUCB Adaptive: B=100, log(q)=25, L=2
BNUCB Adaptive: B=100, log(q)=25, L=3
BNUCB Fixed: B=250, L=2
BNUCB Fixed: B=250, L=3
BNUCB Adaptive: B=250, log(q)=15, L=2
BNUCB Adaptive: B=250, log(q)=15, L=3
NeuralUCB, Fully Sequential, L=2
NeuralTS, L=2
Neural-LinUCB, L=2

(a) Mushroom

101 102 103

Execution Time(s)

2 × 102

3 × 102

Re
gr

et

LinUCB
BNUCB Fixed: B=40, L=2
BNUCB Fixed: B=40, L=3
BNUCB Adaptive: B=40, log(q)=40, L=2
BNUCB Adaptive: B=40, log(q)=40, L=3
BNUCB Fixed: B=100, L=2
BNUCB Fixed: B=100, L=3
BNUCB Adaptive: B=100, log(q)=25, L=2
BNUCB Adaptive: B=100, log(q)=25, L=3
BNUCB Fixed: B=250, L=2
BNUCB Fixed: B=250, L=3
BNUCB Adaptive: B=250, log(q)=15, L=2
BNUCB Adaptive: B=250, log(q)=15, L=3
NeuralUCB, Fully Sequential, L=2
NeuralTS, L=2
Neural-LinUCB, L=2

(b) Magic

Fig. 6. Scatter plot of regret vs execution time for 5 instances selected at random on real datasets.

Results. The results are depicted in Figures 5 and 6. We can make the following observations. First,

three-layer BNUCB algorithm with 𝐵 = 250 batches outperforms all other algorithms. Furthermore,

as the number of batches of BNUCB increases, the regret decreases and the performance gets closer

to that of fully sequential NeuralUCB, or even starts to outperform NeuralUCB when 𝐿 = 3 layers

are used in BNUCB. Meanwhile, the proposed batch algorithms keep the total number of policy

changes limited and improve the running time of the NeuralUCB (see Figure 1). Finally, across

these configurations, adaptive batch algorithms with fewer batches outperform the fixed batch

Batched Neural Bandits13

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

13

algorithms with more batches. For example, in all datasets, the adaptive BNUCB algorithm with

𝐵 = 100 outperform fixed BNUCB algorithm with 𝐵 = 250. This validates our theory that the

minimum number of batches required for getting the optimal 𝑂 (
√
𝑇) regret is much smaller in

the adaptive batch setting compared to the fixed batch setting (order of log𝑇 vs

√
𝑇). In terms of

running time, since LinUCB is a linear algorithm whose number of parameters is far less than those

of neural bandit algorithms (e.g., BatchNeuralUCB), it is not surprising to see that the running time

of LinUCB is less than that of neural bandit algorithms. The result suggests that the neural bandit

algorithms are more favorable for the case where the sample efficiency (i.e., total regret) is more

important than computationally efficiency (i.e., running time).

For the execution time, as can be observed in Figures 6(a) and 6(b), in both datasets the 𝐿 = 3

layer BatchNeuralUCB with 𝐵 = 250 adaptive batches outperforms all other existing algorithms

in terms of average regret. Furthermore, this algorithm executes almost 4 times faster than the

fully sequential NeuralUCB and NeuralTS algorithms and keeps the total number of policy updates

capped at 𝐵 = 250. This clearly shows how batching allows us to add a full layer to our network,

outperforms the fully sequential benchmarks, while keeping the total execution time 4 times

smaller. The performance of other adaptive BatchNeuralUCBbenchmarks is also very close to that

of NeuralUCB and NeuralTS while reducing the total computation cost significantly.

We also report the effective dimension 𝑑 (Definition 5.6) of both datasets here. To obtain the NTK

gram matrix H, we apply the NEURAL TANGENTS package [30] on both Mushroom and Magic

Telescope datasets. We have 𝐾 = 2 and set 𝑇 = 2000 and _ = 0.001, aligned with our experiment

setting. Since our experiments are repeated 10 times, we report the final effective dimension to

be the average of 10 effective dimensions over 10 random batches. The effective dimension of

Mushroom is 246.32, and the effective dimension of Magic Telescope is 231.49. We can see that both

effective dimensions are nearly the same, which explains why BatchNeuralUCB performs nearly

the same on Mushroom and Magic Telescope.

7 PROOF OF THE MAIN RESULTS
7.1 Proof of Theorem 5.8
To prove Theorem 5.8, we need the following lemmas. The first lemma from Zhou et al. [41] suggests

that at each time 𝑡 within the 𝑏-th batch, the difference between the reward of the optimal action

x𝑡,𝑎∗𝑡 and the selected action x𝑡,𝑎𝑡 can be upper bounded by a bonus term defined based on the

confidence radius 𝛽𝑡𝑏 , the gradients g(x𝑡,𝑎𝑡 ;𝜽𝑏) and the covariance matrix Z𝑡𝑏 .
Lemma 7.1 (Lemma 5.3, Zhou et al. 41). Suppose Assumptions 5.2 and 5.4 hold. Let

𝑎∗𝑡 = argmax𝑎∈[𝐾] ℎ(x𝑡,𝑎). There exist positive constants {𝐶𝑖 }4𝑖=1
such that for any 𝛿 ∈ (0, 1), if

[≤ 𝐶1 (𝑚𝑇𝐿 +𝑚_)−1
and𝑚 = poly(𝑇, 𝐿, 𝐾, _−1, _−1

0
, 𝑆−1, log(1/𝛿)), then with probability at least

1 − 𝛿 , the following holds for all 0 ≤ 𝑏 ≤ 𝐵 and 𝑡𝑏 ≤ 𝑡 < 𝑡𝑏+1,

ℎ
(
x𝑡,𝑎∗𝑡

)
− ℎ

(
x𝑡,𝑎𝑡

)
≤ 2𝛽𝑡𝑏 min

{
∥g(x𝑡,𝑎𝑡 ;𝜽𝑏)/

√
𝑚∥Z−1

𝑡𝑏

, 1

}
+𝑚−1/6√

log𝑚b (𝑇),

where b (𝑇) = 𝐶3

(
𝑆𝑇 7/6_−1/6𝐿7/2 +𝑇 5/3_−2/3𝐿3

)
and

𝛽𝑡 = 𝐶4

√
1 +𝑚−1/6

√
log𝑚𝐿4𝑡7/6_−7/6

·
(
a

√
log

detZ𝑡
det _I

+𝑚−1/6
√

log𝑚𝐿4𝑡5/3_−1/6 − 2 log𝛿 +
√
_𝑆

)
+ (_ + 𝑡𝐿)

[
(1 − [𝑚_) 𝐽 /2

√
𝑡/_ +𝑚−1/6√

log𝑚𝐿7/2𝑡5/3_−5/3 (1 +
√
𝑡/_)

]
.

Batched Neural Bandits14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

14

Next lemma bounds the log-determinant of covariance matrix Z𝑇+1 by the effective dimension 𝑑 .

Lemma 7.2. There exists a constant 𝐶 > 0 such that if𝑚 = poly(𝑇, 𝐿, 𝐾, _−1, _−1

0
, 𝑆−1, log(1/𝛿)),

then with probability at least 1 − 𝛿 , we have

log

detZ𝑇+1
det _I

≤ 𝑑 log(1 +𝑇𝐾/_) + 1 +𝐶𝑚−1/6√
log𝑚𝐿4𝑇 5/3_−1/6.

Proof. By Eqs. (B. 16) and (B. 19) in Zhou et al. [41], we can obtain our statement when𝑚 is

large enough. □

Lemma 7.3 (Lemma 11, Abbasi-Yadkori et al. 1). For any {x𝑡 }𝑇𝑡=1
⊂ R𝑑 that satisfies ∥x𝑡 ∥2 ≤ 𝐿, let

A0 = _I and A𝑡 = A0 +
∑𝑡−1

𝑖=1
x𝑖x⊤𝑖 , then we have

𝑇∑
𝑡=1

min{1, ∥x𝑡 ∥A−1

𝑡
}2 ≤ 2 log

detA𝑇+1
det _I

.

Lemma 7.4 (Lemma 12, Abbasi-Yadkori et al. 1). Suppose A,B ∈ R𝑑×𝑑 are two positive definite

matrices satisfying A ⪰ B, then for any x ∈ R𝑑 , ∥x∥A ≤ ∥x∥B ·
√

det(A)/det(B).
Now we begin our proof of Theorem 5.8.

Proof of Theorem 5.8. Define the set C as follows:

C = {𝑏 ∈ {0, · · · , 𝐵 − 1} : det(Z𝑡𝑏+1)/det(Z𝑡𝑏) > 2}.

Then we have for every 𝑏 ∉ C and 𝑡𝑏 ≤ 𝑡 < 𝑡𝑏+1 − 1,

det(Z𝑡)
det(Z𝑡𝑏)

≤
det(Z𝑡𝑏+1)
det(Z𝑡𝑏)

≤ 2.

Based on C, we decompose the regret as follows.

𝑅𝑇 =
∑
𝑏∈C

𝑡𝑏+1−1∑
𝑡=𝑡𝑏

[ℎ
(
x𝑡,𝑎∗𝑡

)
− ℎ

(
x𝑡,𝑎𝑡

)
] +

∑
𝑏∉C

𝑡𝑏+1−1∑
𝑡=𝑡𝑏

[ℎ
(
x𝑡,𝑎∗𝑡

)
− ℎ

(
x𝑡,𝑎𝑡

)
]

(a)

≤ |C| ·𝑇 /𝐵 · 2 +
∑
𝑏∉C

𝑡𝑏+1−1∑
𝑡=𝑡𝑏

[
2𝛽𝑡 min

{
∥g(x𝑡,𝑎𝑡 ;𝜽𝑡)/

√
𝑚∥Z−1

𝑡𝑏

, 1

}
+𝑚−1/6√

log𝑚b (𝑇)
]

(b)

≤ 2|C|𝑇 /𝐵 +𝑚−1/6√
log𝑚b (𝑇)𝑇 + 2

√
2·

𝛽𝑇

∑
𝑏∉C

𝑡𝑏+1−1∑
𝑡=𝑡𝑏

min

{
∥g(x𝑡,𝑎𝑡 ;𝜽𝑡)/

√
𝑚∥Z−1

𝑡
, 1

}
,

where (a) holds since ℎ
(
x𝑡,𝑎∗𝑡

)
− ℎ

(
x𝑡,𝑎𝑡

)
≤ 1 and Lemma 7.1 and (b) holds since 𝑏 ∉ C and Lemma

7.4. Hence,

𝑅𝑇 − 2|C|𝑇 /𝐵 −𝑚−1/6√
log𝑚b (𝑇)𝑇

(a)

≤ 2

√
2𝛽𝑇

√√√
𝑇

𝑇∑
𝑡=1

min

{
∥g(x𝑡,𝑎𝑡 ;𝜽𝑡)/

√
𝑚∥2

Z−1

𝑡

, 1

}
(b)

≤ 2

√
2𝛽𝑇

√
𝑇 log

detZ𝑇+1
det _I

,

Batched Neural Bandits15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

15

where (a) holds due to Cauchy-Schwarz inequality and (b) holds due to Lemma 7.3. We can bound

|C| as follows:

det(Z𝑇+1)
det(_I) =

𝐵−1∏
𝑏=0

det(Z𝑡𝑏+1)
det(Z𝑡𝑏)

(a)

≥
∏
𝑏∈C

det(Z𝑡𝑏+1)
det(Z𝑡𝑏)

(b)

≥ 2
|C |, (7.1)

where (a) holds since Z𝑡𝑏+1 ⪰ Z𝑡𝑏 and (b) holds due to the definition of C. Eq. (7.1) suggests that
|C| ≤ log(det(Z𝑇+1)/det(_I)). Therefore,

𝑅𝑇 ≤ 2 log

det(Z𝑇+1)
det(_I) 𝑇 /𝐵 +𝑚

−1/6√
log𝑚b (𝑇)𝑇 + 2

√
2𝛽𝑇

√
𝑇 log

detZ𝑇+1
det _I

. (7.2)

Finally, with a large enough𝑚, by the selection of 𝐽 and Lemma 7.2, we have log(detZ𝑇 /log _I) =
𝑂 (𝑑) and 𝛽𝑇 = 𝑂 (a

√
log(detZ𝑇 /log _I)+

√
_𝑆) = 𝑂 (a

√
𝑑+
√
_𝑆). We also have𝑚−1/6√

log𝑚b (𝑇)𝑇 ≤
1. Substituting these terms into Eq. (7.2), we complete the proof. □

7.2 Proof of Theorem 5.11
Let 𝐵′ be the value of 𝑏 when Algorithm 1 stops. It is easy to see that 𝐵′ ≤ 𝐵, therefore there are at
most 𝐵 batches. We can first decompose the regret as follows, using Lemma 7.1:

𝑅𝑇 =

𝑇∑
𝑡=1

[ℎ
(
x𝑡,𝑎∗𝑡

)
− ℎ

(
x𝑡,𝑎𝑡

)
] ≤ 2

𝐵′∑
𝑏=0

𝑡𝑏+1−1∑
𝑡=𝑡𝑏

𝛽𝑡 min

{
∥g(x𝑡,𝑎𝑡 ;𝜽𝑡)/

√
𝑚∥Z−1

𝑡𝑏

, 1

}
+𝑚−1/6√

log𝑚b (𝑇)𝑇,

(7.3)

To bound Eq. (7.3), we have the following two separate cases. First, if 𝐵′ < 𝐵, then for all 0 ≤ 𝑏 ≤ 𝐵′
and 𝑡𝑏 ≤ 𝑡 < 𝑡𝑏+1, we have det(Z𝑡) ≤ 𝑞 det(Z𝑡𝑏). Therefore, we have

𝑅𝑇 −𝑚−1/6√
log𝑚b (𝑇)𝑇

(a)

≤ 2𝛽𝑇
√
𝑞

𝐵′∑
𝑏=0

𝑡𝑏+1−1∑
𝑡=𝑡𝑏

min

{
∥g(x𝑡,𝑎𝑡 ;𝜽𝑡)/

√
𝑚∥Z−1

𝑡
, 1

}
(b)

≤ 2𝛽𝑇
√
𝑞
√
𝑇

√√√
𝑇∑
𝑡=1

min

{
∥g(x𝑡,𝑎𝑡 ;𝜽𝑡)/

√
𝑚∥2

Z−1

𝑡

, 1

}
(c)

≤ 2𝛽𝑇
√
𝑇
√
𝑞

√
2 log

detZ𝑇
det _I

, (7.4)

where (a) holds due to Lemma 7.4, (b) holds due to Cauchy-Schwarz inequality and (c) holds due to

Lemma 7.3. Second, if 𝐵′ = 𝐵, then for all 0 ≤ 𝑏 ≤ 𝐵 − 1, we have det(Z𝑡𝑏+1) > 𝑞 det(Z𝑡𝑏). For 𝑏 = 𝐵

and 𝑡𝐵 ≤ 𝑡 < 𝑡𝐵+1, we have

det(Z𝑡)
det(Z𝑡𝐵)

≤ det(Z𝑇)
det(_I) ·

𝐵−1∏
𝑏=0

det(Z𝑡𝑏)
det(Z𝑡𝑏+1)

≤ det(Z𝑇)
det(_I) · 𝑞

−𝐵 . (7.5)

Therefore, by Eq. (7.3) the regret can be bounded as

𝑅𝑇 −𝑚−1/6√
log𝑚b (𝑇)𝑇

≤ 2

𝐵−1∑
𝑏=0

𝑡𝑏+1−1∑
𝑡=𝑡𝑏

𝛽𝑡 min

{
∥g(x𝑡,𝑎𝑡 ;𝜽𝑡)/

√
𝑚∥Z−1

𝑡𝑏

, 1

}
+
𝑡𝐵+1−1∑
𝑡=𝑡𝐵

𝛽𝑡 min

{
∥g(x𝑡,𝑎𝑡 ;𝜽𝑡)/

√
𝑚∥Z−1

𝑡𝑏

, 1

}

Batched Neural Bandits16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

16

(a)

≤ 2𝛽𝑇
√
𝑞

𝐵−1∑
𝑏=0

𝑡𝑏+1−1∑
𝑡=𝑡𝑏

min

{
∥g(x𝑡,𝑎𝑡 ;𝜽𝑡)/

√
𝑚∥Z−1

𝑡
, 1

}
+ 𝛽𝑇

√
det(Z𝑇)
𝑞𝐵 det(_I)

·
𝑡𝐵+1−1∑
𝑡=𝑡𝐵

min

{
∥g(x𝑡,𝑎𝑡 ;𝜽𝑡)/

√
𝑚∥Z−1

𝑡
, 1

}
≤ 2𝛽𝑇 max

{
√
𝑞,

√
det(Z𝑇)
𝑞𝐵 det(_I)

}
·
𝑇∑
𝑡=1

min

{
∥g(x𝑡,𝑎𝑡 ;𝜽𝑡)/

√
𝑚∥Z−1

𝑡
, 1

}
(b)

≤ 2𝛽𝑇 max

{
√
𝑞,

√
det(Z𝑇)
𝑞𝐵 det(_I)

}√
𝑇 ·

√√√
𝑇∑
𝑡=1

min

{
∥g(x𝑡,𝑎𝑡 ;𝜽𝑡)/

√
𝑚∥2

Z−1

𝑡

, 1

}
(c)

≤ 2𝛽𝑇
√
𝑇 max

{
√
𝑞,

√
det(Z𝑇)
𝑞𝐵 det(_I)

}√
2 log

detZ𝑇
det _I

, (7.6)

where (a) holds due to Lemma 7.4 and the following two facts: det(Z𝑡) ≤ 𝑞 det(Z𝑡𝑏) for all 0 ≤ 𝑏 ≤
𝐵 − 1, 𝑡𝑏 ≤ 𝑡 < 𝑡𝑏+1; Eq. (7.5) for 𝑏 = 𝐵, (b) holds due to Cauchy-Schwarz inequality and (c) holds

due to Lemma 7.3. Combining Eqs. (7.4) and (7.6), we have under both 𝐵′ < 𝐵 and 𝐵′ = 𝐵 cases, Eq.

(7.6) holds. Finally, by Lemma 7.2 and the selection of 𝐽 and𝑚, we have

detZ𝑇
log _I

= 𝑂 ((1 +𝑇𝐾/_)𝑑),

log

detZ𝑇
log _I

= 𝑂 (𝑑),

𝛽𝑇 = 𝑂

(
a

√
log

detZ𝑇
log _I

+
√
_𝑆

)
= 𝑂

(
a

√
𝑑 +
√
_𝑆

)
. (7.7)

Thus, substituting Eq. (7.7) into Eq. (7.6), we have

𝑅𝑇 = 𝑂

((
a

√
𝑑 +
√
_𝑆

)
·
√
𝑇 ·max

{√
𝑞,

√
(1 +𝑇𝐾/_)𝑑/𝑞𝐵

}
·
√
𝑑

)
= 𝑂

(√
max{𝑞, (1 +𝑇𝐾/_)𝑑/𝑞𝐵}

(
a𝑑 +

√
_𝑑𝑆

)√
𝑇

)
.

8 CONCLUSION
In this paper, we proposed a BatchNeuralUCB algorithm which combines neural networks with

the UCB technique to balance exploration-exploitation tradeoff while keeping the total number

of batches limited. We studied both fixed and adaptive batch size settings and proved that Batch-

NeuralUCB achieves the same regret as the fully sequential version. Our theoretical results are

complemented by experiments on both synthetic and real-world datasets.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their helpful comments. Quanquan Gu and Dongruo Zhou

are supported in part by the National Science Foundation CAREER Award 1906169. Amin Karbasi

acknowledges funding in direct support of this work from NSF (IIS-1845032), ONR (N00014- 19-1-

2406), and the AI Institute for Learning-Enabled Optimization at Scale (TILOS).

Batched Neural Bandits17

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

17

REFERENCES
[1] Abbasi-Yadkori, Y., Pál, D. and Szepesvári, C. (2011). Improved algorithms for linear stochastic bandits. In Advances

in Neural Information Processing Systems.
[2] Agrawal, S. and Goyal, N. (2013). Thompson sampling for contextual bandits with linear payoffs. In International

Conference on Machine Learning.
[3] Auer, P. (2002). Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine Learning Research

3 397–422.

[4] Auer, P., Cesa-Bianchi, N. and Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine
Learning 47 235–256.

[5] Auer, P. and Ortner, R. (2010). Ucb revisited: Improved regret bounds for the stochastic multi-armed bandit problem.

Periodica Mathematica Hungarica 61 55–65.

[6] Bouneffouf, D. and Rish, I. (2019). A survey on practical applications of multi-armed and contextual bandits. arXiv
preprint arXiv:1904.10040 .

[7] Bubeck, S. and Cesa-Bianchi, N. (2012). Regret analysis of stochastic and nonstochastic multi-armed bandit problems.

Foundations and Trends in Machine Learning 5 1–122.

[8] Cesa-Bianchi, N.,Dekel, O. and Shamir, O. (2013). Online learning with switching costs and other adaptive adversaries.

arXiv preprint arXiv:1302.4387 .

[9] Chapelle, O. and Li, L. (2011). An empirical evaluation of thompson sampling. In Advances in neural information
processing systems.

[10] Chen, L., Yu, Q., Lawrence, H. and Karbasi, A. (2020). Minimax regret of switching-constrained online convex

optimization: No phase transition. In Advances in Neural Information Processing Systems.
[11] Chen, Y. and Krause, A. (2013). Near-optimal batch mode active learning and adaptive submodular optimization.

ICML (1) 28 8–1.

[12] Chu, W., Li, L., Reyzin, L. and Schapire, R. (2011). Contextual bandits with linear payoff functions. In Proceedings of
the 14th International Conference on Artificial Intelligence and Statistics.

[13] Dani, V., Hayes, T. P. and Kakade, S. M. (2008). Stochastic linear optimization under bandit feedback .

[14] Dekel, O., Ding, J., Koren, T. and Peres, Y. (2014). Bandits with switching costs: T 2/3 regret. In Proceedings of the
forty-sixth annual ACM symposium on Theory of computing.

[15] Du, S. S., Zhai, X., Poczos, B. and Singh, A. (2018). Gradient descent provably optimizes over-parameterized neural

networks. arXiv preprint arXiv:1810.02054 .
[16] Esfandiari, H., Karbasi, A.,Mehrabian, A. andMirrokni, V. (2019). Batched multi-armed bandits with optimal

regret. arXiv preprint arXiv:1910.04959 .
[17] Esfandiari, H., Karbasi, A. andMirrokni, V. (2021). Adaptivity in adaptive submodularity.

[18] Filippi, S., Cappe, O., Garivier, A. and Szepesvári, C. (2010). Parametric bandits: The generalized linear case. In

Advances in Neural Information Processing Systems.
[19] Gao, Z.,Han, Y., Ren, Z. and Zhou, Z. (2019). Batched multi-armed bandits problem. In Advances in Neural Information

Processing Systems.
[20] Han, Y., Zhou, Z., Zhou, Z., Blanchet, J., Glynn, P. W. and Ye, Y. (2020). Sequential batch learning in finite-action

linear contextual bandits. arXiv preprint arXiv:2004.06321 .
[21] Jacot, A., Gabriel, F. and Hongler, C. (2018). Neural tangent kernel: Convergence and generalization in neural

networks. In Advances in Neural Information Processing Systems.
[22] Jin, T., Xu, P., Xiao, X. and Gu, Q. (2020). Double explore-then-commit: Asymptotic optimality and beyond. arXiv

preprint arXiv:2002.09174 .
[23] Jun, K.-S., Jamieson, K., Nowak, R. and Zhu, X. (2016). Top arm identification in multi-armed bandits with batch arm

pulls. In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics.
[24] Kittur, A., Chi, E. H. and Suh, B. (2008). Crowdsourcing user studies with mechanical turk. In Proceedings of the

SIGCHI conference on human factors in computing systems.
[25] Langford, J. and Zhang, T. (2007). The epoch-greedy algorithm for contextual multi-armed bandits. In Proceedings of

the 20th International Conference on Neural Information Processing Systems.
[26] Lattimore, T. and Szepesvári, C. (2020). Bandit Algorithms. Cambridge University Press.

[27] Le, H., Voloshin, C. and Yue, Y. (2019). Batch policy learning under constraints. In International Conference on Machine
Learning. PMLR.

[28] Li, L., Chu, W., Langford, J. and Schapire, R. E. (2010). A contextual-bandit approach to personalized news article

recommendation. In Proceedings of the 19th International Conference on World Wide Web.
[29] Li, L., Lu, Y. and Zhou, D. (2017). Provably optimal algorithms for generalized linear contextual bandits. In Proceedings

of the 34th International Conference on Machine Learning-Volume 70. JMLR. org.

Batched Neural Bandits18

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

18

[30] Novak, R., Xiao, L., Hron, J., Lee, J., Alemi, A. A., Sohl-Dickstein, J. and Schoenholz, S. S. (2019). Neural tangents:

Fast and easy infinite neural networks in python. arXiv preprint arXiv:1912.02803 .
[31] Perchet, V., Rigollet, P., Chassang, S., Snowberg, E. et al. (2016). Batched bandit problems. The Annals of Statistics

44 660–681.

[32] Riqelme, C., Tucker, G. and Snoek, J. (2018). Deep Bayesian bandits showdown: An empirical comparison of

Bayesian deep networks for Thompson sampling. arXiv preprint arXiv:1802.09127 .

[33] Ruan, Y., Yang, J. and Zhou, Y. (2020). Linear bandits with limited adaptivity and learning distributional optimal

design. arXiv preprint arXiv:2007.01980 .
[34] Simchi-Levi, D. and Xu, Y. (2019). Phase transitions and cyclic phenomena in bandits with switching constraints. In

Advances in Neural Information Processing Systems.
[35] Slivkins, A. et al. (2019). Introduction to multi-armed bandits. Foundations and Trends® in Machine Learning 12

1–286.

[36] Srinivas, N., Krause, A., Kakade, S. M. and Seeger, M. (2009). Gaussian process optimization in the bandit setting:

No regret and experimental design. arXiv preprint arXiv:0912.3995 .
[37] Valko, M., Korda, N.,Munos, R., Flaounas, I. and Cristianini, N. (2013). Finite-time analysis of kernelised contextual

bandits. arXiv preprint arXiv:1309.6869 .
[38] Xu, P.,Wen, Z., Zhao, H. andGu, Q. (2022). Neural contextual bandits with deep representation and shallow exploration.

In International Conference on Learning Representations.
[39] Zahavy, T. andMannor, S. (2019). Deep neural linear bandits: Overcoming catastrophic forgetting through likelihood

matching. arXiv preprint arXiv:1901.08612 .
[40] Zhang, W., Zhou, D., Li, L. and Gu, Q. (2021). Neural thompson sampling. In International Conference on Learning

Representations.
[41] Zhou, D., Li, L. and Gu, Q. (2020). Neural contextual bandits with ucb-based exploration. In International Conference

on Machine Learning. PMLR.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Setting
	4 Algorithms
	4.1 Fixed Batch Size Scheme
	4.2 Adaptive Batch Size Scheme

	5 Main Results
	6 Numerical Experiments
	6.1 Synthetic Data
	6.2 Real Data

	7 Proof of the Main Results
	7.1 Proof of Theorem 5.8
	7.2 Proof of Theorem 5.11

	8 Conclusion
	References

