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1 INTRODUCTION

One of the core mysteries behind the success of deep learning is that a neural network with a huge number of parameters

can be trained with little to no regularization to fit noisy observations, and yet can still achieve good generalization on

unseen data points. Even more mind-boggling is the observation that models with larger parameter counts actually tend

to generalize better [7, 31, 52]. This turns out to be a quite universal phenomenon, not unique to deep learning [8, 9, 18].

As over-parameterized models become more and more important in applications, it seem imperative to understand the

mathematical reasons behind their success.
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In high-dimensional settings, there are usually possible solutions with low training error but very high population

risk, and so any analysis based only on the number of parameters will be extremely loose. To explain over-parameterized

learning, we need some alternative measure of complexity. Finding the relevant complexity measure of a neural

network remains an open question, but we have come to understand that the appropriate complexity measure for

linear regression is the norm of the coefficients. Much recent work [e.g. 4, 8, 13, 18, 19, 23, 28, 30, 44, 54] has considered

linear regression as a testbed problem which also exhibits some of the surprising behaviors found in deep learning. In

particular, Bartlett et al. [4] show that it is possible for the minimal norm interpolator 𝑤̂ to be consistent even when the

number of dimensions grows much faster than the sample size.

A very natural idea to recover this fact is the following: we can consider the set of predictors with norm smaller than

∥𝑤̂ ∥, and argue that the difference between training error and population error is small uniformly for all predictors

in this set. Because this set is simple in the sense that all predictors have small norm, we can hope for a uniform law

of large numbers to show that the population risk of the minimal norm interpolator is also small. This idea, known

as uniform convergence, has been the core workhorse of learning theory for decades. Unfortunately, there are lower

bounds that show this approach cannot explain consistency in many natural high-dimensional problems [3, 29, 30, 54].

At a high level, this is because the norm required to perfectly fit the noisy labels need to scale with the sample size, and

so the set of predictors with norm smaller than ∥𝑤̂ ∥ can actually be quite large, and in particular will include predictors

with high training error. To sidestep these negative results, Zhou et al. [54] argue that we should focus on upper bounds

only for predictors with low training error. Koehler et al. [21] subsequently show that if we only consider the low-norm

predictors with exactly zero training error, then a uniform convergence argument can actually tightly control the

population risk of low-norm interpolators in Gaussian linear regression. Uniform convergence of interpolators has

shown itself to be a powerful tool for analyzing interpolation learning, especially when closed form solutions are not

available: Koehler et al. [21] proved the first consistency result for basis pursuit (minimum ℓ1-norm interpolation), and

Wang et al. [51] sharpened the analysis to show that basis pursuit can be consistent when the covariates are isotropic,

in strong contrast to the ℓ2 setting.

Though their works highlight the importance of localized uniform convergence and very clearly demonstrates that it

is sufficient for interpolation learning, in practice we do not only care about exact interpolators. For example, there can

be interesting high dimensional settings where interpolation is not possible. When interpolation is possible, we can

also obtain good non-interpolating predictors by early stopping or some amount of regularization. Even if we intend to

perfectly memorize the labels, numerical precision issues will likely prevent us from fitting them to literally zero error.

Thus, we want a more general notion of risk-dependent uniform convergence that is robust to non-interpolation. In the

context of linear regression, we want to understand the population risk of any low-norm predictor with small, but not

exactly zero training error.

In this paper, we revisit the “optimistic rate” bound of Srebro et al. [39], and perform a tighter analysis based on

Gordon’s comparison inequality for Gaussian processes [17, 43]. Our new analysis is tight enough to recover the

consistency result of the minimal-norm interpolator from Bartlett et al. [4] and Koehler et al. [21] for Gaussian linear

regression, which previous work on optimistic rates cannot achieve due to hidden constants and logarithmic factors.
1

At the same time, our result allows us to have a very precise and accurate understanding of the finite-sample risk

of non-interpolating estimators. For example, our upper bound for the ordinary least square estimator matches the

exact expectation formula given by Hastie et al. [18] in the proportional scaling limit, even though the estimator is not

1
A more detailed discussion can be found at the beginning of Section 3.
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consistent. In Section 4, we also apply our generalization framework to analyze ridge and LASSO regression. We show

that it is possible to understand classical statistical theory as well as recent progress in interpolation learning under the

same unified framework of optimistic rates.

2 PROBLEM SETTING

Notation. We use ∥·∥𝑝 for the ℓ𝑝 norm, ∥𝑥 ∥𝑝 = (∑𝑖 |𝑥𝑖 |𝑝 )1/𝑝 . For a positive semidefinite matrix 𝐴, the Mahalanobis

(semi-)norm is ∥𝑥 ∥2
𝐴
:= ⟨𝑥,𝐴𝑥⟩. For a matrix 𝐴 and set 𝑆 , 𝐴𝑆 denotes the set {𝐴𝑥 : 𝑥 ∈ 𝑆}. We always use max𝑥 ∈𝑆 𝑓 (𝑥)

to be −∞ when 𝑆 is empty, and similarly min𝑥 ∈𝑆 𝑓 (𝑥) to be ∞. We use 𝑎 ∨ 𝑏 to denote the maximum between 𝑎 and 𝑏

and 𝑎 ∧ 𝑏 to denote the minimum. We use standard 𝑂 (·) notation, and 𝑎 ≲ 𝑏 for inequality up to an absolute constant.

Data model. We assume that the data (𝑋,𝑌 ) is generated as

𝑌 = 𝑋𝑤∗ + 𝜉, 𝑋𝑖
𝑖𝑖𝑑∼ 𝑁 (0, Σ), 𝜉 ∼ 𝑁 (0, 𝜎2𝐼𝑛), (1)

where 𝑋 ∈ R𝑛×𝑑 has i.i.d. Gaussian rows 𝑋1, . . . , 𝑋𝑛 ∈ R𝑑 ,𝑤∗
is arbitrary, and 𝜉 is Gaussian and independent of 𝑋 . The

empirical and population loss are defined as, respectively,

𝐿̂(𝑤) = 1

𝑛
∥𝑌 − 𝑋𝑤 ∥2

2
, 𝐿(𝑤) = E

(𝑥,𝑦)
(𝑦 − ⟨𝑤, 𝑥⟩)2 = 𝜎2 + ∥𝑤 −𝑤∗∥2Σ,

where in the expectation 𝑦 = ⟨𝑥,𝑤∗⟩ + 𝜉0 with 𝑥 ∼ 𝑁 (0, Σ) independent of 𝜉0 ∼ 𝑁 (0, 𝜎2). When 𝑑 < 𝑛, there is an

unique minimizer of 𝐿̂ which is the ordinary least square estimator 𝑤̂OLS = (𝑋𝑇𝑋 )−1𝑋𝑇𝑌 . When 𝑑 ≥ 𝑛, for an arbitrary

norm ∥·∥, the minimal norm interpolator is 𝑤̂ = argmin
𝐿̂ (𝑤)=0 ∥𝑤 ∥.

3 OPTIMISTIC RATES THEORY

As discussed by Zhou et al. [54], a promising version of localized uniform convergence is to use bounds with “optimistic

rates” [34, 39], which establish different generalization guarantees depending on the size of the training error. (This

broad concept has been studied at least since the work of Vapnik [47, Theorem 6.3].) In particular, Srebro et al. [39]

show that with high probability, it holds uniformly over all𝑤 ∈ H that

𝐿(𝑤) − 𝐿̂(𝑤) ≤ ˜O
(√
𝐿̂(𝑤) · R2

𝑛 (H) + R2

𝑛 (H)
)

(2)

where R𝑛 (H) is the Rademacher complexity
2
of H for any 𝑛 ∈ N. Considering only interpolators in H , the points for

which 𝐿̂(𝑤) = 0), this bound becomes

𝐿(𝑤) ≤ ˜O
(
R2

𝑛 (H)
)
. (3)

In classical settings, it is typically the case that R𝑛 (H) ≤
√
𝑅/𝑛 for some constant 𝑅 > 0, and so (2) implies a graceful

degradation from a learning rate of
˜O(1/𝑛) in realizable settings to a learning rate of

˜O(1/
√
𝑛) in the more general

non-realizable settings. The hidden constant and log factor in the
˜O notation are not so problematic in this regime,

because the quantity inside is vanishing.

In interpolation learning, however, we no longer have the scaling of R𝑛 (H) ≤
√
𝑅/𝑛: the complexity required to

perfectly fit the noisy observations needs to scale with the sample size, and Zhou et al. [54] show in some cases that we

can expect R2

𝑛 (H) to be approximately as large as the Bayes risk 𝜎2. Therefore, any hidden factor greater than 1 inside

2
Srebro et al. [39] consider the worst-case Rademacher complexity. In our results, we use a smaller quantity known as the average Rademacher complexity.

The formal definition is given in Section 3.2.
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the
˜O notation of (3) will not be tight enough to establish consistency. In this work, we improve the hidden factor

of 200 000 log
3𝑛 from Srebro et al. [39] to exactly 1, in the particular setting of Gaussian linear regression. Ignoring

lower-order terms, we show that with high probability, the following inequality is approximately true for all𝑤 ∈ H :

𝐿(𝑤) − 𝐿̂(𝑤) ≤ 2

√
𝐿̂(𝑤) · R2

𝑛 (H) + R2

𝑛 (H),

which can be more elegantly written as

𝐿(𝑤) ≤
(√
𝐿̂(𝑤) + R𝑛 (H)

)
2

. (4)

The formal statement is given in Theorem 2. It will be clear from our applications in Section 4 that the constants in (4)

are in fact tight, and that the bound allows us to get precise generalization bounds for minimal-norm interpolation as

well as ridge and LASSO regression.

3.1 Main Bound

We now give our main result, which will be used in Section 3.2 to obtain (4).

Theorem 1. Under the model assumption in (1), let 𝐹 : R𝑑 → [0,∞] be a function such that for 𝑥 ∼ 𝑁 (0, Σ), with
probability at least 1 − 𝛿 ′, it holds uniformly over all𝑤 ∈ R𝑑 that

⟨𝑤 −𝑤∗, 𝑥⟩ ≤ 𝐹 (𝑤). (5)

For any 𝛿 > 0, assume 𝑛 ≥ 196 log(12/𝛿). Then there exists 𝛽1 ≤ 14

√
log(12/𝛿)

𝑛 such that with probability at least

1 − 2(𝛿 ′ + 𝛿), it holds uniformly over all𝑤 ∈ R𝑑 that

𝐿(𝑤) ≤ (1 + 𝛽1)
(√
𝐿̂(𝑤) + 𝐹 (𝑤)

√
𝑛

)
2

. (6)

The full proof can be found in Appendix B; we briefly sketch the proof here.

Proof sketch of Theorem 1. We do this via Gordon’s Theorem (also known as the Gaussian Minmax Theorem;

see Theorem 16). It suffices to prove that

sup

𝑤

√
𝐿(𝑤)
1 + 𝛽1

−
(√
𝐿̂(𝑤) + 𝐹 (𝑤)

√
𝑛

)
≤ 0.

Write 𝑋 = 𝑍Σ1/2, where 𝑍 is a matrix of standard Gaussian entries. By the definitions of 𝐿̂(𝑤) and 𝑌 , we have

sup

𝑤

√
𝐿(𝑤)
1 + 𝛽1

− 1

√
𝑛
(∥𝑌 − 𝑋𝑤 ∥2 + 𝐹 (𝑤)) = sup

𝑤
inf

∥𝜆 ∥2=1

√
𝐿(𝑤)
1 + 𝛽1

+ 1

√
𝑛

(
⟨𝜆, 𝑍Σ1/2 (𝑤 −𝑤∗) − 𝜉⟩ − 𝐹 (𝑤)

)
.

The last expression is a max-min optimization with a random Gaussian matrix 𝑍 , so by Gordon’s Theorem we can

prove a high-probability upper bound on this quantity (the “Primary Optimization”) by upper-bounding the following

Manuscript submitted to ACM
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“Auxiliary Optimization” problem with standard Gaussian vectors 𝐻 ∼ 𝑁 (0, 𝐼𝑑 ) and 𝐺 ∼ 𝑁 (0, 𝐼𝑛):

sup

𝑤
inf

∥𝜆 ∥2=1

√
𝐿(𝑤)
1 + 𝛽1

+ 1

√
𝑛

(
∥𝜆∥2⟨𝐻, Σ1/2 (𝑤 −𝑤∗)⟩ + ∥Σ1/2 (𝑤 −𝑤∗)∥2⟨𝐺, 𝜆⟩ − ⟨𝜆, 𝜉⟩ − 𝐹 (𝑤)

)
= sup

𝑤
inf

∥𝜆 ∥2=1

√
𝐿(𝑤)
1 + 𝛽1

+ 1

√
𝑛

(
⟨𝐻, Σ1/2 (𝑤 −𝑤∗)⟩ + ⟨𝐺 ∥Σ1/2 (𝑤 −𝑤∗)∥2 − 𝜉, 𝜆⟩ − 𝐹 (𝑤)

)
= sup

𝑤

[√
𝐿(𝑤)
1 + 𝛽1

− 1

√
𝑛
∥𝐺 ∥Σ1/2 (𝑤 −𝑤∗)∥2 − 𝜉 ∥2

]
+ 1

√
𝑛

[
⟨Σ1/2𝐻,𝑤 −𝑤∗⟩ − 𝐹 (𝑤)

]
.

The first term is negative with high probability, because

𝐿(𝑤) = ∥Σ1/2 (𝑤 −𝑤∗)∥2
2
+ 𝜎2;

since 𝐺, 𝜉 are approximately orthogonal, we have

∥𝐺 ∥Σ1/2 (𝑤∗ −𝑤)∥2 − 𝜉 ∥22 ≈ ∥𝐺 ∥2
2
∥Σ1/2 (𝑤∗ −𝑤)∥2

2
+ ∥𝜉 ∥2

2
≈ 𝑛(∥Σ1/2 (𝑤 −𝑤∗)∥2

2
+ 𝜎2).

The 1 + 𝛽1 terms accounts for the variations in 𝐺 and 𝜉 . The second term is also negative with high probability by the

fact that Σ1/2𝐻 ∼ N(0, Σ) and our definition of 𝐹 . □

3.2 Gaussian width/Rademacher Bound

Now we discuss how to recover the Rademacher bound (4) by choosing an 𝐹 to satisfy the criterion (5). In the context

of our model assumption (1), the average Rademacher complexity is given by the following:

Definition 1. Given a positive semi-definite matrix Σ and sample size 𝑛 ∈ N, the Rademacher complexity of a hypothesis

classH is given by

R𝑛 (H) = E
𝑥1,...,𝑥𝑛∼N(0,Σ)
𝑠∼Unif( {±1}𝑛)

[
sup

ℎ∈H

����� 1𝑛 𝑛∑
𝑖=1

𝑠𝑖ℎ(𝑥𝑖 )
�����
]
.

Rademacher complexity measures the ability of H to fit random Rademacher noise (±1) on an average training set

sampled from the ground truth distribution. For more background, see for example the work of Bartlett et al. [2], Bartlett

and Mendelson [5], Srebro et al. [39], Wainwright [50].

A closely related geometric complexity measure is the Gaussian width [see, e.g., 5, 48]. The following definitions

match the notation of Koehler et al. [21].

Definition 2. The Gaussian width and the radius of a set 𝑆 ⊂ R𝑑 are

𝑊 (𝑆) := E
𝐻∼N(0,𝐼𝑑 )

sup

𝑠∈𝑆
|⟨𝑠, 𝐻 ⟩| and rad(𝑆) := sup

𝑠∈𝑆
∥𝑠 ∥2 .

We also define the notation

𝑊Σ (𝑆) :=𝑊 (Σ1/2𝑆)

to represent the Gaussian width with respect to covariance matrix Σ.

As it turns out, when the hypothesis classH is linear, the Rademacher complexity is actually equivalent to Gaussian

width (up to a scaling of 1/
√
𝑛).

Manuscript submitted to ACM



6 Lijia Zhou, Frederic Koehler, Danica J. Sutherland, and Nathan Srebro

Proposition 1. Let K be an arbitrary subset of R𝑑 and consider H = {𝑥 ↦→ ⟨𝑤, 𝑥⟩ : 𝑤 ∈ K}. Then, for any positive

semi-definite matrix Σ, it holds that

R𝑛 (H) = 𝑊Σ (K)
√
𝑛

. (7)

Proof. Observe that for 𝑥1, ..., 𝑥𝑛 ∼ N(0, Σ) independent of 𝑠 ∼ Unif({±1}𝑛), we have 1

𝑛

∑𝑛
𝑖=1 𝑠𝑖𝑥𝑖 ∼ N

(
0, 1𝑛 Σ

)
.

The rest just follows from definitions:

R𝑛 (H) = E
𝑥1,...,𝑥𝑛∼N(0,Σ)
𝑠∼Unif( {±1}𝑛)

[
sup

𝑤∈K

����� 1𝑛 𝑛∑
𝑖=1

𝑠𝑖 ⟨𝑤, 𝑥𝑖 ⟩
�����
]

= E
𝑥1,...,𝑥𝑛∼N(0,Σ)
𝑠∼Unif( {±1}𝑛)

[
sup

𝑤∈K

�����〈𝑤, 1𝑛 𝑛∑
𝑖=1

𝑠𝑖𝑥𝑖
〉�����

]
= E

𝐻∼N(0,𝐼𝑑 )

[
sup

𝑤∈K

���〈𝑤, 1√
𝑛
Σ

1

2𝐻
〉��� ]

= 𝑛−1/2𝑊Σ (K) . □

Consequently, to prove (4), we can replace Rademacher complexity with Gaussian width, and we can see that the

definition of 𝐹 in Theorem 1 is very related to Gaussian width. To get tighter upper bounds, we recall the definition of

covariance splitting [21], which is also used by Bartlett et al. [4]:

Definition 3 (Covariance splitting). Given a positive semidefinite matrix Σ ∈ R𝑑×𝑑 , we write Σ = Σ1⊕Σ2 if Σ = Σ1+Σ2,
each matrix is positive semidefinite, and their spans are orthogonal.

To satisfy the definition of 𝐹 in condition (5), we can write 𝑥 = Σ1/2𝐻 , where 𝐻 ∼ 𝑁 (0, 𝐼𝑑 ). For any splitting

Σ = Σ1 ⊕ Σ2, let 𝐻1 be the orthogonal projection of 𝐻 onto the span of Σ1, and 𝐻2 that onto the span of Σ2.

Example 1 (Gaussian width and Theorem 1). If we are only interested in predictors from a fixed hypothesis class K ,

then by orthogonality, it holds that for all𝑤 ∈ K ,

⟨𝑤∗ −𝑤, 𝑥⟩ = ⟨𝑤∗ −𝑤, Σ1/2
1
𝐻 ⟩ + ⟨𝑤∗ −𝑤, Σ1/2

2
𝐻 ⟩

= ⟨𝑤∗ −𝑤, Σ1/2
1
𝐻1⟩ + ⟨𝑤∗ −𝑤, Σ1/2

2
𝐻2⟩

≤ ∥Σ1/2 (𝑤 −𝑤∗)∥2 · ∥𝐻1∥2 + |⟨Σ1/2
2
𝑤∗, 𝐻2⟩| + sup

𝑤∈Σ1/2
2

K
|⟨𝑤,𝐻2⟩|.

Hence, by standard concentration results and the fact that ∥Σ1/2 (𝑤 −𝑤∗)∥2 =
√
𝐿(𝑤) − 𝜎2, we can choose

𝐹 (𝑤) =
(√

rank Σ1 + 2

√
log(16/𝛿 ′)

) √
𝐿(𝑤) − 𝜎2 +𝑊Σ2 (K) +

(
rad(Σ1/2

2
K) +



𝑤∗


Σ2

) √
2 log(16/𝛿 ′)

for𝑤 ∈ K , and let 𝐹 (𝑤) = ∞ for𝑤 ∉ K .

Plugging into Theorem 1 and rearranging the

√
𝐿(𝑤) − 𝜎2 term, we obtain the following:

Theorem 2. Under the model assumptions in (1), let K be an arbitrary compact set, and take any covariance splitting

Σ = Σ1 ⊕ Σ2. Fixing 𝛿 ≤ 1/4, let 𝛽2 = 32

(√
log(1/𝛿)

𝑛 +
√

rank(Σ1)
𝑛

)
. If 𝑛 is large enough that 𝛽2 ≤ 1, then the following

holds with probability at least 1 − 𝛿 for all𝑤 ∈ K :

𝐿(𝑤) ≤ (1 + 𝛽2)
(√
𝐿̂(𝑤) +

𝑊Σ2 (K)
√
𝑛

+
[
∥𝑤∗∥Σ2 + rad(Σ1/2

2
K)

] √
2 log(32/𝛿)

𝑛

)
2

. (8)
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Moreover, a stronger version of the above is also true: it holds that uniformly over all dilation factors 𝛼 ≥ 0 and𝑤 ∈ 𝛼K ,

we have

𝐿(𝑤) ≤ (1 + 𝛽2)
(√
𝐿̂(𝑤) +

𝛼𝑊Σ2 (K)
√
𝑛

+
[
∥𝑤∗∥Σ2 + 𝛼 rad(Σ

1/2
2

K)
] √

2 log(32/𝛿)
𝑛

)
2

. (9)

The full proof can be found in Appendix B. As discussed by Koehler et al. [21], we can usually find a split such that

the

√
log(32/𝛿)/𝑛 term is negligible compared to the Gaussian width term, and so ignoring lower-order terms, our

Equation (8) basically shows that

𝐿(𝑤) ≤
(√
𝐿̂(𝑤) +

𝑊Σ2 (K)
√
𝑛

)
2

,

which, in light of Proposition 1, is the same as (4). In addition, our stronger bound (9) shows that for any predictor

𝑤 outside K , we can always dilate K by 𝛼 and the Gaussian width term inside the corresponding upper bound will

also be scaled by 𝛼 . Since our guarantee is uniform over 𝛼 , we are able to adapt our upper bounds to predictors with

different norms and training errors at the same time. This will be useful for our applications in Section 3.4, where we

prove uniform generalization guarantees for all predictors along the regularization path.

3.3 Special Case: Uniform Convergence of Interpolators

If we only look at interpolators in the setK , we immediately recover the uniform convergence of interpolators guarantee

from (8):

Corollary 1 (Theorem 1 of [21]). Under the assumptions of Theorem 2, we have with probability at least 1 − 𝛿 that

sup

𝑤∈K,𝐿̂ (𝑤)=0
𝐿(𝑤) ≤ 1 + 𝛽2

𝑛

𝑊Σ2 (K) +
[
∥𝑤∗∥Σ2 + rad(Σ1/2

2
K)

] √
2 log

(
32

𝛿

)
2

. (10)

It was shown that the above result can be used to tightly characterize the population risk of interpolating predictors.

In particular, when the set K = {𝑤 ∈ R𝑑 : ∥𝑤 ∥ ≤ 𝐵} is a norm ball for some arbitrary choice of norm ∥ · ∥ and 𝐵 > 0,

then the Gaussian width is

𝑊Σ (K) = 𝐵 · E ∥𝑥 ∥∗
where ∥ · ∥∗ is the dual norm and 𝑥 ∼ N(0, Σ). For example, if we consider the minimal-norm interpolator 𝑤̂ =

argmin
𝑤:𝐿̂ (𝑤)=0 ∥𝑤 ∥ and choose 𝐵 to be a high probability upper bound of ∥𝑤̂ ∥, then we approximately have

𝐿(𝑤̂) ≤ (1 + 𝑜 (1)) · 𝐵
2 (E ∥𝑥 ∥∗)2

𝑛
. (11)

Combined with a norm analysis, Koehler et al. [21] show that Corollary 1 can recover the nearly-matching necessary

and sufficient conditions from Bartlett et al. [4] for the consistency of the minimal ℓ2 norm interpolator. In particular,

they show that

𝐵2 ≈ 𝜎2 𝑛

(E ∥𝑥 ∥∗)2
with lower-order terms depending on the effective ranks. In the context of ℓ2 penalty, recall the following definition of

effective ranks:

Definition 4 ([4]). The effective ranks of a covariance matrix Σ are

𝑟 (Σ) = Tr(Σ)
∥Σ∥op

and 𝑅(Σ) = Tr(Σ)2
Tr(Σ2)

.
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The lower-order terms will vanish when the ℓ2 benign overfitting conditions hold: there exists a sequence of

covariance splits Σ = Σ1 ⊕ Σ2 such that

rank(Σ1)
𝑛

→ 0,


𝑤∗



2

√
Tr(Σ2)
𝑛

→ 0,
𝑛

𝑅(Σ2)
→ 0. (12)

In this case, we have 𝐿(𝑤̂) → 𝜎2 in probability with 𝑤̂ = 𝑋𝑇 (𝑋𝑋𝑇 )−1𝑌 when ∥ · ∥ is the Euclidean norm, recovering

in the Gaussian case the consistency result of Bartlett et al. [4], Tsigler and Bartlett [44]. Koehler et al. [21] also

demonstrated that Corollary 1 can establish the consistency of minimal-ℓ1 norm interpolators in certain settings. This

was established by generalizing the sufficient benign overfitting conditions (12) to general norms. Wang et al. [51]

observed that these conditions are too pessimistic in the case of basis pursuit with isotropic covariance — this happens

because the analysis of the auxiliary optimization problems arising in the proof of the general result is loose. Sharpening

that step, they showed uniform convergence of interpolators can establish the optimal consistency result as well as a

matching lower bound, c.f. [12, 28].

Remark 1 (Comparison to the proof of [21]). The proof technique introduced in Koehler et al. [21] proceeds by an

application of the Gaussian minmax theorem directly to the left hand side of (10), the uniform generalization gap for

interpolators. In order to accommodate covariance splitting, and also because the auxiliary problem arising this way

may concentrate poorly, the analysis was performed conditional on high probability events over the span of the low

rank part Σ1. In the new analysis, the splitting is performed by choosing the complexity functional 𝐹 (𝑤) appropriately;
this roughly mirrors and simplifies the aforementioned step in the old analysis, as well as generalizing the result beyond

exact interpolators.

3.4 General Consequence: Flatness of Loss under Benign Overfitting Conditions

In this section, we illustrate another consequence of Theorem 2 in the context of benign overfitting. As just discussed,

even in situations where the labels have noise, there can be low-norm predictors that exactly interpolate the data and

nevertheless generalize well. We see that our bounds from Theorem 2 and its special case Corollary 1 are sufficient

to explain this phenomenon. In fact, they can tell us something more: the curve of the population loss along the

regularization path will become flat in these settings, as long as the regularization parameter is small enough for us to

obtain a predictor with norm larger than ∥𝑤∗∥. In other words, once we fit all of the signals, it does not matter how

much noise is fitted, and all low norm near-interpolators can achieve consistency at the same time.

In particular, if we take K = {𝑤 : ∥𝑤 ∥ ≤ 1}, then it is clear that for any𝑤 ∈ R𝑑 , we have𝑤 ∈ ∥𝑤 ∥ · K . To apply (9)

of Theorem 2, we define

𝐶Σ (∥𝑤 ∥) := ∥𝑤 ∥𝑊Σ (K)
√
𝑛

+
[
∥𝑤∗∥Σ + ∥𝑤 ∥ rad(Σ1/2K)

] √
2 log(32/𝛿)

𝑛
. (13)

By virtue of (9), if𝑤 ′ ∈ R𝑑 (e.g., the minimal-norm interpolator) satisfies

𝐿̂(𝑤 ′) = 0 and 𝐶Σ2 (∥𝑤 ′∥) = 𝜎 + 𝑜 (1),

then𝑤 ′
is a benign interpolator: 𝐿(𝑤 ′) = 𝜎2 + 𝑜 (1). Moreover, when the above holds, we can also establish consistency

for any constrained empirical risk minimizer 𝑤̂𝑅 of the form:

𝑤̂𝑅 := argmin

∥𝑤 ∥≤𝑅
𝐿̂(𝑤) (14)
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as long as 𝑅 is larger than ∥𝑤∗∥, and with the convention that if there are multiple minimizers then the minimum-norm

minimizer is chosen.

Theorem 3. Under the model assumptions in (1), let ∥ · ∥ be an arbitrary norm on R𝑑 and consider the complexity

functional 𝐶Σ and the constrained ERM 𝑤̂𝑅 given by (13) and (14). Suppose there is a split Σ = Σ1 ⊕ Σ2 and 𝜖 > 0 such

that with probability at least 1 − 𝛿 , it holds that√
𝐿̂(𝑤∗) ≤ (1 + 𝜖)𝜎 and 𝐶Σ2 (∥𝑤∗∥) ≤ 𝜖 (15)

and there exists𝑤 ′ ∈ R𝑑 such that

𝐿̂(𝑤 ′) = 0 and 𝐶Σ2 (∥𝑤 ′∥) ≤ (1 + 𝜖)𝜎 + 𝜖. (16)

Then, with probability at least 1 − 2𝛿 , it holds uniformly over any 𝑅 ≥ ∥𝑤∗∥ that

𝐿(𝑤̂𝑅) ≤ (𝜎 + 5(𝜖 + 𝛽2) (𝜎 ∨ 1))2 . (17)

for the same choice of 𝛽2 as in Theorem 2.

The full proof, in Appendix B, follows based on a simple argument (Lemma 8) which can be applied even more

generally. The condition (15) can easily be satisfied using standard concentration results, whereas (16) requires some

benign overfitting conditions. When there exists a benign interpolator, we can expect 𝜖 → 0 for a sufficiently large

sample size, and so 𝐿(𝑤̂𝑅) will converge to 𝜎2 uniformly. In the context of ridge regression (ℓ2 penalty), we want the

condition (12) to hold.

Corollary 2. Let 𝜎 > 0 be fixed. Under the assumptions of Theorem 3 with ∥ · ∥ as the Euclidean norm, suppose that

Σ = Σ(𝑛) is a sequence of covariance matrices with splits Σ = Σ1 ⊕ Σ2 satisfying the benign overfitting conditions (12).

Then it holds that

sup

𝑅≥∥𝑤∗ ∥2
𝐿(𝑤̂𝑅) → 𝜎2 in probability. (18)

In other words, we get a uniform convergence result along this entire component of the regularization path. It

is straightforward to make this into a finite-sample bound by using the non-asymptotic bounds on the norm of the

minimum-norm interpolator from Koehler et al. [21], as well as to generalize the result to other norms under the

appropriate benign overfitting conditions from that work. We omit the details here.

4 APPLICATIONS

In this section, we show how to apply our generalization bound to a variety of settings by choosing the appropriate

complexity functional 𝐹 in Theorem 1, and by doing so we recover versions of classical results from compressed sensing,

high-dimensional statistics, and statistical learning theory. Some aspects of our results are new: in particular, applying

our theory always recovers finite-sample bounds and generally gives guarantees which apply to all predictors in a class,

not just the particular empirical risk minimizer. As further explained by Koehler et al. [21], Zhou et al. [54], this is a

crucial advantage of uniform-convergence based generalization bounds compared to other methods of analysis. For

example, analyses based on random matrix theory methods or the asymptotic framework for applying the Convex

Gaussian Minmax Theorem (CGMT) developed by Thrampoulidis et al. [41, 43] usually only give guarantees for the

empirical risk minimizer and only apply in certain asymptotic limits (“proportional scaling”). Gordon’s Theorem/GMT

itself has long been used in the analysis of M-estimation, both in regularization and interpolation settings [e.g. 1, 11,
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10 Lijia Zhou, Frederic Koehler, Danica J. Sutherland, and Nathan Srebro

Fig. 1. Loss along regularization path for ridge regression under benign overfitting conditions. Curve and error bars are computed from

10 trials with covariance matrix Σ =

[
1 0

0 𝛼2𝐼𝑑

]
, 𝜎2 = 0.5, 𝛼 = 0.05, and ground truth 𝑤∗ = (1, 0, . . . , 0) from 𝑛 = 600 samples with

aspect ratio 𝑑/𝑛 = 20; the 𝑥-axis corresponds to the log of the ridge parameter. The curve “bound” corresponds to the generalization
guarantee of Theorem 2; it is close to the population loss (“loss”) along the whole regularization path. “Null” and “bayes” are 𝐿 (0)
and 𝐿 (𝑤∗) . “Capacity” corresponds to the term𝑊 (K)2/𝑛 ≈ ∥𝑤 ∥2 Tr(Σ)/𝑛 for the ridge output 𝑤, and “capacity*” is the same term
with ∥𝑤 ∥ replaced by ∥𝑤∗ ∥. As predicted by Theorem 3, the population loss of the ridge regression is roughly flat once ∥𝑤 ∥ > ∥𝑤∗ ∥
(threshold indicated by grey vertical line), and this is matched by the generalization bound, even though it is determined by the
training error 𝐿̂ (𝑤) (curve “train”) and capacity/norm ∥𝑤 ∥ which vary significantly.

14, 24, 27, 32, 33, 35, 38, 40] — what is new is how we do this by controlling the generalization gap. As the examples

will illustrate, the optimistic rates theory developed in the previous section explains many different phenomena with a

simple and natural generalization theory approach.

4.1 Consistency of Optimally-tuned Regularized Regression

To demonstrate the applicability of our Theorem 2 outside of the interpolation setting, we show how to apply it to

derive consistency of optimally-tuned regularized least squares estimators such as the LASSO and Ridge regression. In

particular, we will show the ridge estimator is consistent under a low effective dimension assumption on Σ; this kind of

effective dimension condition was used, for example, by Mendelson [25], Tsigler and Bartlett [44], Zhang [53].

Given any predictor𝑤 , by the same reasoning in Section 3.3, we obtain

𝐿(𝑤) ≤ (1 + 𝑜 (1)) ·
(√
𝐿̂(𝑤) + ∥𝑤 ∥ · E ∥𝑥 ∥∗√

𝑛

)
2

. (19)

For any 𝜆 > 0, consider the regularized linear regression problem

𝑤̂𝜆 = argmin

𝑤
𝐿̂(𝑤) + 𝜆∥𝑤 ∥ . (20)

By comparing the KKT conditions, it is easy to see that there is some choice of 𝜆∗ such that

𝑤̂𝜆∗ = argmin

𝐿̂ (𝑤) ≤ ∥𝜉 ∥2
2
/𝑛

∥𝑤 ∥.

Since 𝐿̂(𝑤∗) = ∥𝜉 ∥2
2
/𝑛 ≈ 𝜎 , it naturally follows that ∥𝑤̂𝜆∗ ∥ ≤ ∥𝑤∗∥. Plugging in the estimates into (19), we obtain the

following:
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Corollary 3. Under the assumptions of Theorem 2, consider the regularized regression estimators 𝑤̂𝜆 as in (20) with an

arbitrary norm ∥ · ∥. With probability at least 1 − 𝛿 , there exists a 𝜆∗ ≥ 0 such that

𝐿(𝑤̂𝜆∗ ) ≤ (1 + 3𝛽2)
(
𝜎 + ∥𝑤∗∥

√
𝑛

(
E

𝑥∼N(0,Σ2)
∥𝑥 ∥∗ + sup

∥𝑢 ∥≤1
∥𝑢∥Σ2 ·

√
8 log(36/𝛿)

))
2

. (21)

Hence, we have 𝐿(𝑤̂𝜆∗ ) → 𝜎2 in probability if

rank(Σ1)
𝑛

→ 0,
∥𝑤∗∥ · E𝑥∼N(0,Σ2) ∥𝑥 ∥∗√

𝑛
→ 0, and

∥𝑤∗∥ · sup∥𝑢 ∥≤1 ∥𝑢∥Σ2√
𝑛

→ 0. (22)

In the context of ridge regression, (21) can be simplified to

𝐿(𝑤̂𝜆∗ ) ≤ (1 + 3𝛽2)
©­«𝜎 +

√
32 log(36/𝛿) ·

∥𝑤∗∥2
2
Tr(Σ2)
𝑛

ª®¬
2

(23)

because bothE𝑥∼N(0,Σ2) ∥𝑥 ∥2 and sup∥𝑢 ∥2≤1 ∥𝑢∥Σ2 = ∥Σ2∥1/2op can be upper bounded by

√
Tr(Σ2). Therefore, a sufficient

condition for the consistency of optimally-tuned ridge regression is

rank(Σ1)
𝑛

→ 0 and ∥𝑤∗∥2
√

Tr(Σ2)
𝑛

→ 0. (24)

We see that the above is weaker than the benign overfitting condition (12) because we don’t need the last condition

𝑛
𝑅 (Σ2) → 0. However, from Section 3.4, having that condition means we no longer need to tune the ridge parameter 𝜆:

any sufficiently small 𝜆 will lead to consistency.

4.2 LASSO

Slow Rate under Bounded ℓ1 Norm. In the context of LASSO regression, assume without loss of generality that the

maximum diagonal entry of Σ is 1. Then we have

E
𝑥∼N(0,Σ2)

∥𝑥 ∥∞ + sup

∥𝑢 ∥1≤1
∥𝑢∥Σ2 ·

√
8 log(36/𝛿) ≲

√
log(𝑑),

and (21) translates to the convergence rate of 𝜎 ∥𝑤∗∥1
√

log(𝑑)
𝑛 + ∥𝑤∗∥2

1
· log(𝑑)𝑛 to 𝜎2, which is also known as the “slow”

rate of LASSO. Moreover, if𝑤∗
is 𝑘-sparse, then we can bound

∥𝑤∗∥1 ≤ 𝑘 ∥𝑤∗∥∞

and so under these assumptions, the LASSO slow rate guarantee becomes 𝜎𝑘 ∥𝑤∗∥∞
√

log(𝑑)
𝑛 + 𝑘2∥𝑤∗∥2∞ · log(𝑑)𝑛 . This

analysis works for all predictors𝑤∗
of bounded ℓ1-norm, and it is minimax optimal over this class, but when we assume

that 𝑤∗
is 𝑘-sparse it is generally suboptimal and in particular does not give exact recovery when 𝜎 = 0. We now

explain how our theory recovers the correct behavior in the sparse and well-conditioned setting commonly studied in

the sparse linear regression literature.

Performance under Sparsity and Compatability/Restricted Eigenvalue Condition. We show how to recover well-known

results from compressed sensing and high-dimensional statistics about sparse linear regression with Gaussian designs.

In particular, we prove a performance guarantee for the LASSO when the covariance matrix is well-conditioned, as

previously analyzed by Raskutti et al. [35], or more generally satisfies a version of the compatability condition [45]. We

start with the following well-known lemma commonly used in the analysis of the LASSO [see, e.g., 48].
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Lemma 1. Suppose 𝑤∗ is 𝑘-sparse, i.e. supported on coordinate set 𝑆 ⊂ [𝑑] with |𝑆 | ≤ 𝑘 . Every 𝑤 with ∥𝑤 ∥1 ≤ ∥𝑤∗∥1
satisfies

∥(𝑤 −𝑤∗)𝑆𝐶 ∥1 ≤ ∥(𝑤∗ −𝑤𝑆 )∥1 . (25)

The above lemma shows that the vector𝑤 −𝑤∗
lies in the covex cone

C(𝑆) := {𝑢 : ∥𝑢𝑆𝐶 ∥1 ≤ ∥𝑢𝑆 ∥1},

where 𝑆 is the support of𝑤∗
. Now we can state the version of the compatibility condition [45] we use; the compatibility

condition is a weakening of the restricted eigenvalue condition [10, 35], and the compatibility condition is known to be

a sufficient and almost necessary condition for the LASSO to perform exact recovery from 𝑂 (𝑘 log𝑑) samples in the

Gaussian random design setting [20].

Definition 5 (Compatibility Condition; see [45]). For a positive semidefinite matrix Σ : 𝑛 × 𝑛, 𝐿 ≥ 1, and set 𝑆 ⊂ [𝑛],
we say Σ has 𝑆-restricted ℓ1-eigenvalue

𝜙2 (Σ, 𝑆) = min

𝑢∈C(𝑆)
|𝑆 | · ⟨𝑢, Σ𝑢⟩

∥𝑢𝑆 ∥2
1

.

We say the S-compatibility condition holds if the 𝑆-restricted ℓ1-eigenvalue is nonzero.

Example 2 (Application of Theorem 1 to LASSO with sparsity). Observe that for 𝑥 ∼ 𝑁 (0, Σ), we have by Holder’s

inequality, the standard Gaussian tail bound, and the union bound that with probability at least 1 − 𝛿 ′,

⟨𝑤 −𝑤∗, 𝑥⟩ ≤ ∥𝑤 −𝑤∗∥1∥𝑥 ∥∞ ≤ ∥𝑤 −𝑤∗∥1max

𝑖

√
2Σ𝑖𝑖 log(2𝑑/𝛿 ′). (26)

Thus, we can take 𝐹 (𝑤) to be the right hand side of this inequality when applying Theorem 1.

Combining (26) with Lemma 1 and the compatibility condition, we obtain the following:

Theorem 4. Under the model assumptions in (1), additionally assume that:

(1) 𝑤∗ is a 𝑘-sparse vector.

(2) For 𝑆 ⊂ [𝑑] the support of𝑤∗, the covariance matrix Σ satisfies the 𝑆-compatibility condition.

(3) The number of samples 𝑛 satisfies

𝑛 >
32max𝑖 Σ𝑖𝑖
𝜙2 (Σ, 𝑆)

· 𝑘 log
(
32𝑑

𝛿

)
.

Then, for all𝑤 satisfying ∥𝑤 ∥1 ≤ ∥𝑤∗∥1 and 𝐿̂(𝑤) ≤ (1 + 𝜖)𝜎2 for an arbitrary 𝜖 , we have

𝐿(𝑤) − 𝜎2 ≲ (𝛽1 + 𝜖)𝜎2 + (1 + 𝜖) max𝑖 Σ𝑖𝑖
𝜙 (Σ, 𝑆)2

· 𝜎
2𝑘 log(32𝑑/𝛿)

𝑛
, (27)

where 𝛽1 = 𝑂 (
√
log(1/𝛿)/𝑛) is as defined in Theorem 1. In particular, when 𝜎 = 0 we have that ∥𝑤 −𝑤∗∥Σ = 0, and so if

Σ is positive definite then we have𝑤 = 𝑤∗ (exact recovery).

To interpret the above bound, observe that when we consider the ERM, we know that 𝜖 = 𝑂 (1/
√
𝑛) based on

concentration of the norm of the noise (Lemma 2) and so the first term is 𝜎2/
√
𝑛 and the second term, assuming Σ

is well-conditioned, is 𝑂 (𝜎2𝑘 log(𝑑/𝛿)/𝑛), which is the well-known minimax rate for sparse linear regression [see,

e.g., 36]. The above analysis is not very careful in terms of constant factors; in Section 4.5 we show how to get sharp

constants in the isotropic setting. Also, in Section 6.1 we show how to get rid of the first term on the right hand side
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of the bound above, when we are specially considering the constrained ERM 𝑤̂ minimizing the squared loss over all

∥𝑤 ∥1 ≤ ∥𝑤∗∥1, i.e. the LASSO solution: see Corollary 5.

4.3 Ordinary Least Squares

Next, we consider a high-dimensional setting when 𝑑 is smaller than 𝑛. For example, when 𝑑 = 𝑛/2, the ordinary least

squares estimator 𝑤̂OLS is the unique minimizer of the training error, but it does not interpolate the training data and

so the uniform convergence analysis of Koehler et al. [21] cannot be applied. As it turns out, our Theorem 1 is enough

to tightly characterize the excess risk of 𝑤̂OLS.

Example 3 (Application of Theorem 1 to OLS). By the Cauchy-Schwarz inequality, it holds that

⟨𝑤∗ −𝑤, 𝑥⟩ ≤ ∥𝐻 ∥
2
∥𝑤∗ −𝑤 ∥Σ .

Using standard concentration inequalities and 𝐿(𝑤) − 𝜎2 = ∥𝑤 −𝑤∗∥2Σ, we can choose

𝐹 (𝑤) =
(√
𝑑 + 2

√
log(4/𝛿 ′)

) √
𝐿(𝑤) − 𝜎2 . (28)

Theorem 5. Under the model assumptions in (1), let 𝛾 = 𝑑/𝑛 < 1. There exists some 𝜖 ≲
(
log(36/𝛿)

𝑛

)
1/2

such that for all

sufficiently large 𝑛, with probability 1 − 𝛿 it holds uniformly for all𝑤 ∈ R𝑑 that������√𝐿(𝑤) − 𝜎2 −

√
𝛾𝐿̂(𝑤)
(1 − 𝛾)2

������ ≤ 𝜖
√
𝐿̂(𝑤) +

√
1

1 − 𝛾

(
𝐿̂(𝑤)
1 − 𝛾 − 𝜎2

)
+ 𝜖𝐿̂(𝑤). (29)

For the empirical risk minimizer 𝑤̂OLS = (𝑋𝑇𝑋 )−1𝑋𝑇𝑌 , the right hand side of (29) is approximately zero because we also

have

𝐿̂(𝑤̂OLS) ≤ 𝜎2 (1 − 𝛾) + 𝜎2𝜖
√
1 − 𝛾 . (30)

Therefore, we obtain the following generalization bound:

𝐿(𝑤̂OLS) −
𝜎2

1 − 𝛾 ≲ 𝜎
2

(
log(36/𝛿)

𝑛

)
1/4

. (31)

We have a relatively complicated expression in (29) because our choice of 𝐹 according to (28) depends on the excess

risk 𝐿(𝑤) − 𝜎2, and so after applying (6) we need to solve a quadratic equation. All quantities in (29) are well-defined

because 𝐿̂ ≥ 0 and the 𝜖𝐿̂(𝑤) term inside the last square root ensures that with high probability it is positive. If we

think of 𝜖 as zero for simplicity, then our uniform convergence guarantee (29) predicts that the excess risk 𝐿(𝑤) − 𝜎2 of
a predictor with training error 𝐿̂(𝑤) cannot be larger than

1

1 − 𝛾
©­«
√
𝛾𝐿̂(𝑤)
1 − 𝛾 +

√
𝐿̂(𝑤)
1 − 𝛾 − 𝜎2ª®¬

2

.

The minimal error is approximately 𝜎2 (1 − 𝛾) and so all near empirical risk minimizer should enjoy an excess risk

of 𝜎2
𝛾
1−𝛾 , which agrees with the exact expectation formula in Hastie et al. [18]; see their discussion for additional

references. Since our approach also gives us a lower bound for free (by solving the quadratic equation), Theorem 5 is

enough to show that 𝐿(𝑤̂OLS) converges to 𝜎2 1

1−𝛾 in probability. We see that even though the empirical risk minimizer

is not consistent, our localized uniform convergence approach can still provide an accurate understanding of the excess

risk, and our bound for OLS is tight at least for the leading term.
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Remark 2. The 𝑂 (𝑛−1/4) rate of (31) comes from the fact that we need to take the square root of 𝜖 in the last term

of (29); it is not too difficult to see that this is sub-optimal for OLS. In fact, in Theorem 13, we explicitly calculate the

variance of 𝐿(𝑤̂OLS) and show that in the proportional scaling regime (e.g., 𝛾 = 0.5), the right amount of deviation is

of order 𝑂 (𝑛−1/2). In the fixed-𝑑 regime, the convergence rate can be accelerated to the more familiar rate of 𝑂 (𝑛−1).
In Theorem 14, we show how to use a more direct approach to obtain high probability bounds that match these

variance calculations. Surprisingly, we can also show that the 𝑂 (𝑛−1/4) rate is generally unavoidable for any uniform

convergence analysis that only considers the size of 𝐿̂(𝑤). Our analysis is tight in the sense that there are estimators

whose training error is indistinguishable from 𝑤̂OLS, but whose convergence rate is provably slower than Ω(𝑛−1/4). For
readers interested in the tightest rate of convergence, more details can be found in Section 6.2.

4.4 Minimum-Euclidean Norm Interpolation with Isotropic Data and Proportional Scaling

In the previous section, we saw that for OLS in the proportional scaling regime a simple application of our optimistic-rate

bound recovers the limiting asymptotic population loss as a function of 𝑑/𝑛 < 1. For 𝑑/𝑛 > 1, the OLS estimator is no

longer defined, and instead we study the performance of the minimum-norm interpolator of the data. In Theorem 6

below, we show that with a slightly more careful
3
application of Theorem 1, we can recover the loss curve at any aspect

ratio (see Figure 2). Together with the previous result, we show that the optimistic-rate bound can capture the behavior

of the pseudoinverse estimator 𝑤̂ = 𝑋+𝑌 on both sides of the double descent curve.

Theorem 6. Under the model assumptions in (1) with 𝛾 = 𝑑/𝑛 > 1 and Σ = 𝐼𝑑 , there exists 𝜖 ≲
(
log(18/𝛿)

𝑛

)
1/2

such that

with probability at least 1 − 𝛿 , the following holds uniformly over all𝑤 such that 𝐿̂(𝑤) = 0:����𝐿(𝑤) −
[
𝜎2 + ∥𝑤 ∥2

2
+

(
1 − 2

(1 + 𝜖)𝛾

)
∥𝑤∗∥2

2

] ���� ≤ 2∥𝑤∗∥2

√√√(
1 − 1

𝛾

) (
∥𝑤 ∥2

2
−

∥𝑤∗∥2
2

𝛾

)
− 𝜎2

𝛾
+ 3𝜖 ∥𝑤 ∥2

2
. (32)

It is clear from Figure 2 below that Theorem 6 is capturing the asymptotic behavior of the minimum-norm interpolator;

we prove this formally in Theorem 7 below by combining the generalization bound with a norm calculation, recovering

the asymptotic formula for this setting computed by Hastie et al. [18] using random matrix theory techniques.

Theorem 7. Under the model assumptions in (1) with 𝛾 = 𝑑/𝑛 > 1 and Σ = 𝐼𝑑 , there exists 𝜖 ≲
(
log(40/𝛿)

𝑛

)
1/2

such that

with probability at least 1 − 𝛿 , it holds that

min

𝑤:𝑋𝑤=𝑌
∥𝑤 ∥2

2
≤ (1 + 𝜖)

(
∥𝑤∗∥2

2

𝛾
+ 𝜎2

𝛾 − 1

)
. (33)

Thus, by Theorem 6, we have

𝐿(𝑤̂) −
[(
1 − 1

𝛾

)
∥𝑤∗∥2

2
+ 𝜎2 𝛾

𝛾 − 1

]
≤ 𝜖

(
∥𝑤∗∥2

2

𝛾
+ 𝜎2

𝛾 − 1

)
+ ∥𝑤∗∥2

√√√
𝜖

(
∥𝑤∗∥2

2

𝛾
+ 𝜎2

𝛾 − 1

)
(34)

where 𝑤̂ is the minimal-ℓ2 norm interpolator. If we fix 𝜎2, 𝛾 and ∥𝑤∗∥2, then as 𝑛 → ∞

𝐿(𝑤̂) →
(
1 − 1

𝛾

)
∥𝑤∗∥2

2
+ 𝜎2 𝛾

𝛾 − 1

in probability. (35)

3
The specific choice of the complexity function 𝐹 follows from our Lemma 10 in the appendix.
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Fig. 2. Generalization bounds for OLS/minimum-ℓ2 norm interpolation with isotropic covariance Σ = 𝐼 , ∥𝑤∗ ∥ = 2, 𝜎2 = 0.5, 𝑛 = 4096,
and varying aspect ratio 𝑑/𝑛. The vertical line at 𝑑/𝑛 = 1 represents the double descent peak: on the left (𝑑/𝑛 < 1) the predictor 𝑤
considered is the Ordinary Least Squares solution and on the right the minimum ℓ2-norm interpolator. The line “train” is the empirical
loss 𝐿̂ (𝑤) , the line “loss” is the test/population loss 𝐿 (𝑤) , “bayes” is the minimal population loss 𝐿 (𝑤∗) , and “null’ is 𝐿 (0) . Each
curve correspond to the means from 30 trials at each value of 𝑑/𝑛, and the error bars correspond to standard deviations. The line

“bd1” corresponds to the bound
(√

𝐿̂ (𝑤) + ∥𝑤 ∥
√
𝑑/𝑛

)
2

from Theorem 2, and “bd2” is the upper bound from Theorem 5 for 𝑑/𝑛 < 1

and Theorem 6 for 𝑑/𝑛 > 1. As we see, bd2 is much closer to the true loss around the double descent peak. As explained in Section 5,
bd2 can be recovered by looking at a localized version of Gaussian width. Both bd1 and bd2 are derived from our main optimistic
rates bound Theorem 1.

Remark 3. Similar to the application in the last section, we also have a lower order 𝑂 (𝑛−1/4) term. It is suboptimal,

and we suspect that this is unavoidable for any uniform convergence analysis that only considers the typical size of

∥𝑤̂ ∥. Nonetheless, this bound recovers the leading term, and the lower-order term is negligible if we only care about

the difference with 𝜎2.

4.5 Sharp analysis of LASSO in the Isotropic Setting

A well-known application of the Gaussian Minmax Theorem is to the sharp analysis of the LASSO in the setting

where the covariates are isotropic and Gaussian [see, e.g., 1, 40]. Our optimistic rates bound Theorem 1 recovers a

corresponding generalization bound for all predictors𝑤 with ∥𝑤 ∥1 ≤ ∥𝑤∗∥1, which when specialized to the constrained

ERM (i.e. the LASSO solution) recovers these results.

Theorem 8. Using the notation of Theorem 5, we have with probability at least 1− 𝛿 that for all𝑤 with ∥𝑤 ∥1 ≤ ∥𝑤∗∥1,������√𝐿(𝑤) − 𝜎2 −

√
𝛾𝐿̂(𝑤)
(1 − 𝛾)2

������ ≤ 𝜖
√
𝐿̂(𝑤) +

√
1

1 − 𝛾

(
𝐿̂(𝑤)
1 − 𝛾 − 𝜎2

)
+ 𝜖𝐿̂(𝑤) (36)

provided 𝛾 + 2𝜖/
√
𝑛 < 1, where

K ′
:= {𝑢 : ∃𝛿 > 0, ∥𝑤∗ + 𝛿𝑢∥1 ≤ ∥𝑤∗∥1} and 𝛾 :=

1

𝑛
·𝑊 (K ′ ∩ 𝑆𝑛−1)2 .

Observe that if 𝜎 = 0 and 𝐿̂(𝑤) = 0 then we get exact recovery provided 𝛾 + 2𝜖/
√
𝑛 < 1 which is sharp up to the

constant in the confidence term [see, e.g., 1, 11]. Informally, exact recovery occurs when 𝑛 > 𝜔2
, i.e. the number of
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observations exceeds the statistical dimension. Moreover, we can consider the asymptotic setting where 𝜎 = 𝑜 (1) and
the proportional scaling limit where 𝛾 converges to constant. In this case, it is known [42, Equation 40(a)] that we have

𝐿̂(𝑤̂𝐿𝐴𝑆𝑆𝑂 )/𝜎2 → 1 − 𝛾 , so the right hand side of (84) converges to zero and we have

1

𝜎2
𝐿(𝑤̂𝐿𝐴𝑆𝑆𝑂 ) − 1 → 𝛾

1 − 𝛾 .

Thus we recover the characterization of the performance of LASSO in this regime [40, 42]. It is possible, as in the

OLS setting, to also derive non-asymptotic bounds on 𝐿̂(𝑤̂𝐿𝐴𝑆𝑆𝑂 ) and therefore obtain non-asymptotic bounds on the

performance of the LASSO; we omit the details.

Remark 4. The Gaussian width of the tangent cone K ′
has been sharply characterized in previous work [e.g. 1, 11].

In particular, from the work of Amelunxen et al. [1] we know that if𝑤∗
is 𝑘-sparse,

𝜔 =𝑊 (K ′ ∩ 𝑆𝑛−1) ≤𝑊 (cone(K ′) ∩ 𝑆𝑛−1) ≤
√
𝑑𝜓 (𝑠/𝑑)

where

𝜓 (𝜌) := inf

𝜏≥0

{
𝜌 (1 + 𝜏2) + (1 − 𝜌)

√
2/𝜋

∫ ∞

𝜏

(𝑢 − 𝜏)2𝑒−𝑢
2/2𝑑𝑢

}
,

as well as a corresponding lower bound which characterizes 𝜔 .

5 LOCALIZED UNIFORM CONVERGENCE MEETS LOCALIZED COMPLEXITY MEASURE: THE
OPTIMALITY OF LOCAL GAUSSIANWIDTH

Although our choice of the complexity function 𝐹 in the applications so far can seem quite mysterious, we show how it

can be chosen systematically based on the regularizer or the geometry of the constraint set in this section. As we will

see, the fact that we can obtain the sharp constants our analysis is not coincidental: the local Gaussian width theory

can explain it and elucidate the connection to the previous asymptotic statistics literature (see Remark 5). Consider the

following localized version of a convex set K :

K𝑟 := {𝑤 ∈ K : ∥𝑤∗ −𝑤 ∥Σ ≤ 𝑟 }

Based on Proposition 1, the corresponding Gaussian width𝑊Σ (K𝑟 ) can be interpreted as a localized version of the

Rademacher Complexity of the function class [see, e.g., 2, 26].

The optimal complexity functional. Ignoring relatively minor technical issues involving the uniform concentration of

Gaussian width, we can take 𝐹 (𝑤) =𝑊Σ (K∥𝑤−𝑤∗ ∥Σ ) in the optimistic rates bound (Theorem 1). This choice of 𝐹 will

lead to an optimal asymptotic guarantee in certain limits, particularly the proportional scaling limit. To see why, first

note that if 𝑟 = ∥𝑤 −𝑤∗∥Σ, then we have from the optimistic rates bound that√
𝜎2 + 𝑟2 ≤ (1 + 𝛽1)

(√
𝐿̂(𝑤̂) +𝑊Σ (K𝑟 )/

√
𝑛

)
.

Rearranging and using 1/(1 + 𝛽1) ≥ 1 − 𝛽1 gives

(1 − 𝛽1)
√
𝜎2 + 𝑟2 −𝑊Σ (K𝑟 )/

√
𝑛 ≤

√
𝐿̂(𝑤̂) . (37)

For simplicity, denote the left hand side of (37) as a function of 𝑟 called𝜓 . To obtain a learning guarantee in terms of

𝑟 , we can find the sublevel set of 𝜓 based on the empirical loss. As the empirical loss becomes smaller, we will pick
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out a smaller and smaller sublevel set. When K is convex, it is just an interval because 𝜓 will be convex
4
. On the

other hand, we can use CGMT to analyze the minimal training error in K and show that it nearly match the minimal

value of𝜓 , see Theorem 9 below. This means that (37) is nearly an equality for the ERM in K and its excess risk 𝑟 is

precisely determined by the minimizer of𝜓 . In applications,𝜓 usually admits an unique minimizer, which confirms the

approximate optimality of our generalization bound. We note that most of this discussion can also be generalized to

non-convex sets K , but the minimal error in K may no longer be determined by CGMT when K is not convex.

We can now formalize this argument. First, we define two summary functionals similar to the left hand side of (37).

For some absolute constant 𝐶 > 0 and 𝛽1 as defined in Theorem 1, we let the upper summary functional 𝜓+
𝛿
(𝑥) at

confidence level 𝛿 ∈ (0, 1) to be

𝜓+
𝛿
(𝑟 ) := max

{
0, (1 + 𝛽1)

√
𝜎2 + 𝑟2 −𝑊Σ (K𝑟 )/

√
𝑛 +𝐶𝑟

√
log(2/𝛿)/𝑛

}
(38)

and the lower summary functional𝜓−
𝛿
(𝑥) at confidence level 𝛿 ∈ (0, 1) to be

𝜓−
𝛿
(𝑟 ) := max

{
0, (1 − 𝛽1)

√
𝜎2 + 𝑟2 −𝑊Σ (K𝑟 )/

√
𝑛 −𝐶𝑟

√
log(2/𝛿)/𝑛

}
. (39)

The upper functional comes from the CGMT analysis of the minimal error while the lower functional comes from

the application of Theorem 1. As discussed, they match except for a lower order term.

Theorem 9. Suppose that K is a convex set and consider the upper summary function𝜓+
𝛿
as defined in (38). It holds

with probability at least 1 − 𝛿 ,

min

𝑤∈K

√
𝐿̂(𝑤) ≤ min

𝑟 ≥0
𝜓+
𝛿
(𝑟 ) (40)

The following result, which is a formalization of (37), informally states that when a training error of 𝜇2 is approxi-

mately achievable by any predictor in K , then only predictors𝑤 with𝜓−
𝛿
(∥𝑤 −𝑤∗∥Σ) ≤ 𝜇 can achieve it — note that

by convexity, the set {𝑟 : 𝜓−
𝛿
(𝑟 ) ≤ 𝜇} will always be an interval which shrinks as we decrease 𝜇. For the lower bound

direction, the argument requires a union bound so we adjust the value of 𝛿 slightly to 𝜏 ; the difference is generally

negligible since these confidence parameters only appear inside of logarithms.

Theorem 10. Suppose thatK is a convex set and consider the summary functional𝜓+
𝛿
,𝜓−

𝛿
as defined in (38) and (39). Let

𝛿 > 0 and 𝜇 be arbitrary such that 𝜇 > 𝜇∗ := min𝑟 ≥0𝜓+
𝛿
(𝑟 ) and define 𝑟∗ := inf{𝑟 : 𝜓+

𝛿
(𝑟 ) = 𝜇∗}. Then with probability at

least 1 − 4𝛿 , it holds that uniformly over all𝑤 ∈ K such that
√
𝐿̂(𝑤) ≤ 𝜇 that:

∥𝑤 −𝑤∗∥Σ ≤ 𝑟+ := sup{𝑟 ≥ 0 : 𝜓−
𝛿
(𝑟 ) ≤ 𝜇} (41)

and also

∥𝑤 −𝑤∗∥Σ ≥ 𝑟− := inf

{
𝑟 ≥ 0 : 𝜓−

𝜏 (𝑟 ) ≤ 𝜇
}

(42)

where 𝜏 := 𝛿
/
⌈ 𝜇−𝜇

∗

𝑟 ∗ ⌉.

If we want to specifically analyze near-empirical risk minimizers, we can apply Theorem 10 with 𝜇 of the form 𝜇∗ + 𝜖
with a small 𝜖 > 0, and the conclusion is that their generalization error ∥𝑤 −𝑤∗∥Σ will be an approximate minimizer of

the summary functional𝜓−
𝛿
.

Example 4. To illustrate Theorem 10, we briefly explain how to apply this result in the settings of OLS and minimum

norm interpolation with isotropic data. Since we already have given precise nonasymptotic results for these settings in

4
For a proof, see Lemma 12 and Lemma 13 in the appendix.
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the previous sections, we only give a high-level summary of how to apply Theorem 10 in these examples and ignore,

for example, the small difference between𝜓−
,𝜓+

which is relevant for finite sample bounds. For OLS, we take K = R𝑑

so𝑊Σ (K𝑟 ) ≈ 𝑟
√
𝑑/𝑛 so the limiting summary functional is

𝜓 (𝑟 ) ≈
√
𝜎2 + 𝑟2 − 𝑟

√
𝑑/𝑛

which is minimized at

𝑟2 = 𝜎2 (𝑑/𝑛)/(1 − 𝑑/𝑛),

so taking 𝜇 → 𝜓 (𝑟 ) from above, we see by Theorem 10 that the OLS solution 𝑤̂ satisfies ∥𝑤̂ −𝑤∗∥Σ ∈ 𝜓−1 ( [0, 𝜇]) =
{𝜓−1 (𝜇)} = {𝑟 } informally recovering the conclusion of Theorem 5. For ridge regression (and in particular minimun

norm interpolation) in the isotropic setting, we can reduce without loss of generality to the case where K is the unit

ball in which case K𝑟 is the intersection of the unit ball with a ball of radius 𝑟 about 𝑤∗
: the Gaussian width of this

intersection can be explicitly computed by solving a two-dimensional Euclidean geometry problem, and this essentially

corresponds to the key Lemma 10 in the proof of Theorem 6.

Remark 5 (Comparison to Moreau Envelope Theory [41]). In asymptotic settings where the two two summary

functionals 𝜓−
𝛿

and 𝜓+
𝛿
both converge to a single limit 𝜓 with a unique minimizer, Theorem 10 implies that the

asymptotic error of the constrained empirical risk minimizer is given by the equation

∥𝑤̂ −𝑤∗∥Σ = argmin

𝑟 ≥0
𝜓 (𝑟 ).

In particular, the functional𝜓 (𝑟 ) serves as a “summary functional” which encapsulates all of the relevant information

about the geometry of 𝑤∗
and K . In such an asymptotic setting, Theorem 3.1 of Thrampoulidis et al. [41] gives an

asymptotic characterization of the performance of the constrained ERM (without any finite sample bounds) in terms of

a summary functional called the “expected Moreau envelope”: this can be understood as encoding almost the same

information as 𝜓 (𝑟 ). Some of the main advantages of Theorem 10 are that (1) it is nonasymptotic (in particular, it

applies outside of the proportional scaling regime), (2) arguably easier to use and interpret, with a simple and direct

connection to established notions of local complexity used in generalization theory [see, e.g., 2, 26], and (3) it describes

the generalization behavior of predictors𝑤 besides the Empirical Risk Minimizer. Their result, while only applying in

the proportional scaling limit, has the advantage of being applicable to other loss functions such as the Huber loss,

being stated for more general noise models, and giving formulas directly in terms of regularization parameters without

rewriting the optimization as a constrained optimization.

6 IMPROVED FINITE-SAMPLE RATE

In this section, we discuss how to obtain improved finite sample rates and explain why the precise rates will depend on

the particular information we have about the predictor.

6.1 Faster rates for low-complexity classes

When the set K is low complexity, as in the case of ordinary least squares when 𝑑 is fairly small compared to 𝑛, the

optimal rate for the empirical risk minimizer in K goes at a “parametric rate” of 1/𝑛, faster than a 1/
√
𝑛 rate. At first

glance, it may appear impossible to get faster than a 1/
√
𝑛 rate from the main optimistic rates bound Theorem 1 because

of the presence of the 𝛽1 = 𝑂 (
√
log(2/𝛿)/𝑛) term. As we will show, one can actually get fast/optimal rates from this

theorem, but there is a different sense in which the 1/
√
𝑛 is unavoidable: this rate is actually the best we can hope for if
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we are only allowed to use certain summary statistics of the predictor (for example, see Remark 2). Nevertheless, it is

still possible to obtain fast/optimal rates for the empirical risk minimizer by a black-box application of Theorem 1. The

strategy we use is to bound the error ∥𝑤 −𝑤∗∥Σ̂ in the empirical metric by using a direct and very simple argument

based on the KKT condition, and then apply Theorem 1 to bound the error in the population metric. The general idea of

analyzing the population loss by going through the empirical metric is very common in statistics and learning theory

[e.g. 6, 22, 26].

Theorem 11. LetK be a closed convex set in R𝑑 containing𝑤∗ and suppose 𝛿 ′ ≥ 0, 𝑝 ≥ 0 are such that with probability

at least 1 − 𝛿 ′ over the randomness of 𝑥 ∼ 𝑁 (0, Σ), uniformly over all𝑤 ∈ K we have

⟨𝑤 −𝑤∗, 𝑥⟩ ≤ ∥𝑤 −𝑤∗∥Σ
√
𝑝. (43)

Suppose that 𝑤̂ = argmin𝑤∈K 𝐿̂(𝑤) and 𝑝/𝑛 ≤ 0.999, then for all 𝑛 ≥ 𝐶 log(2/𝛿) for some absolute constant 𝐶 > 0, it

holds with probability at least 1 − (𝛿 + 𝛿 ′) that

𝐿(𝑤̂) − 𝜎2 ≤ (1 + 𝜏)𝜎2 · 𝑝
𝑛
. (44)

where 𝜏 = 𝜏 (𝑝, 𝑛, 𝛿) is upper bounded by an absolute constant and satisfies 𝜏 (𝑝, 𝑛, 𝛿) → 1 in any joint limit [𝑝 +
log(2/𝛿)]/𝑛 → 0, 𝑛 → ∞.

The details of the proof can be found in Appendix E, where it is obtained as a special case of a more general result

(Lemma 15). To illustrate the application of this result, we show how it is used in the analysis of OLS.

Corollary 4. Under the model assumptions (1) with 𝑑 < 𝑛 and assuming a sufficiently large 𝑛, it holds with probability at

least 1 − 𝛿 that

𝐿(𝑤̂OLS) − 𝜎2 ≲ 𝜎2
(√

𝑑

𝑛
+ 2

√
log(36/𝛿)

𝑛

)
2

(45)

Theorem 11 can be applied in a very similar way to analyze other models in the low complexity regime, for example

the LASSO when the sparsity level is small, which we illustrate below. Provided the ℓ1-eigenvalue 𝜑 and maximum

diagonal entry of Σ are constants, we recover the sharp Θ(𝜎2𝑘 log(𝑑)/𝑛) minimax rate for sparse linear regression

(which is sharp provided 𝑘 ≪ 𝑑 ; see, e.g., [36]). This recovers the guarantee for the LASSO in the Gaussian random

design setting given by combining the result of Raskutti et al. [35] with the appropriate analysis of LASSO in the fixed

design setting [e.g. 10, 45].

Corollary 5. Applying Theorem 11 with K = {∥𝑤 ∥1 ≤ ∥𝑤∗∥1} the rescaled ℓ1-ball and under the sparsity and compata-

bility condition assumptions of Theorem 4, we have with probability at least 1 − 𝛿 that the LASSO solution

𝑤̂𝐿𝐴𝑆𝑆𝑂 = argmin

𝑤:∥𝑤 ∥1≤∥𝑤∗ ∥1
𝐿̂(𝑤)

satisfies

𝐿(𝑤̂𝐿𝐴𝑆𝑆𝑂 ) − 𝜎2 ≲
max𝑖 Σ𝑖𝑖
𝜙 (Σ, 𝑆)2

· 𝜎
2𝑘 log(16𝑑/𝛿)

𝑛
(46)

provided 𝑛 is sufficiently large that √
max𝑖 Σ𝑖𝑖
𝜙 (Σ, 𝑆)2

· 8𝑘 log(16𝑑/𝛿)
𝑛

≤ 0.999.
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6.2 Sharp Rate for OLS

We now zero in on the question of sharp rates for Ordinary Least Squares, returning to the discussion from Remark 2.

Unlike all of the previous sections, in this section we will use tools beyond Theorem 1 in order to precisely compute

second order terms in the generalization gap. Surprisingly, even though we can match the high probability bound with

an exact calculation up to first order term (see Theorem 5), the existence of certain near-ERM can prevent us from

recovering the correct variance term:

Theorem 12. Under the model assumptions in (1), fix 𝛾 = 𝑑/𝑛 to be some value in (0, 1) and pick any 𝑐 > 0. Then there

exists another absolute constant 𝑐 ′ > 0 such that for all sufficiently large 𝑛, with probability at least 1 − 𝛿 , there exists a
𝑤 ∈ R𝑑 such that

𝐿̂(𝑤) − 𝐿̂(𝑤̂OLS) ≤ 𝑐 ·
𝜎2

𝑛1/2
, (47)

but the population error satisfies

𝐿(𝑤) − 𝐿(𝑤̂OLS) ≥ 𝑐 ′ ·
𝜎2

𝑛1/4
. (48)

If we know that 𝐿̂(𝑤) = 𝐿̂(𝑤̂OLS), then it is necessarily the case that 𝑤 = 𝑤̂OLS and as we will see, we can use

Theorem 14 to get the tightest possible convergence rates. On the other hand, it is not difficult to see that 𝑛𝐿̂(𝑤̂OLS)/𝜎2

follows a chi-squared distribution with𝑛−𝑑 degrees of freedom, and by the variance formula of chi-squared distributions,

we have

Var(𝐿̂(𝑤̂OLS)) =
2𝜎4 (1 − 𝛾)

𝑛
.

Consequently, 𝐿̂(𝑤̂OLS) can in fact deviate from E 𝐿̂(𝑤̂OLS) = 𝜎2 (1 − 𝛾) by the order of 𝜎2/
√
𝑛. If we only know that

𝐿̂(𝑤) is within the normal range of 𝐿̂(𝑤̂OLS), then the above theorem says that the sub-optimal rate of 𝑂 (𝑛−1/4) that
we show from Theorem 5 is actually tight and unavoidable. We can show a similar negative result for the fixed 𝑑 regime

that the convergence cannot be faster than𝑂 (𝑛−1/2), but as we can see from the last section, using ∥𝑤 −𝑤∗∥2
Σ̂
≈ 𝜎2𝛾 as

the empirical metric instead is enough to recover the parameteric rate 𝑂 (1/𝑛). This argument fails for the proportional

limit regime because the smallest eigenvalue of Σ̂ is (1 − √
𝛾)2 and so we can only get the larger quantity 𝜎2

𝛾

(1−√𝛾 )2

which fails to capture the first order behavior of 𝜎2
𝛾
1−𝛾 .

Finally, we show how to prove the tight finite sample rate using more direct methods. In fact, we can use the higher

order moments of the inverse Wishart distribution [49] to obtain the exact closed-form expressions for both the mean

and variance of 𝐿(𝑤̂OLS) with any finite value of 𝑛 and 𝑑 .

Theorem 13. Under the model assumptions in (1) with 𝑑 ≤ 𝑛, consider the ordinary least square estimator 𝑤̂OLS =

(𝑋𝑇𝑋 )−1𝑋𝑇𝑌 . It holds that

E𝐿(𝑤̂OLS) = 𝜎2
𝑛 − 1

𝑛 − 𝑑 − 1

Var(𝐿(𝑤̂OLS)) = 2𝜎4
𝑑 (𝑛 − 1)

(𝑛 − 𝑑 − 1)2 (𝑛 − 𝑑 − 3)

(49)

Hence as 𝑑/𝑛 → 𝛾 , it holds that

E𝐿(𝑤̂OLS) →
𝜎2

1 − 𝛾 and
𝑛

𝜎4
Var(𝐿(𝑤̂OLS)) →

2𝛾

(1 − 𝛾)3
. (50)
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If 𝑑 is held constant, as 𝑛 → ∞, we have

𝑛 E[𝐿(𝑤̂OLS) − 𝜎2] → 𝜎2𝑑 and
𝑛2

𝜎4
Var(𝐿(𝑤̂OLS)) → 2𝑑. (51)

We can also show a matching high probability version of Theorem 13 based on the Gaussian minimax theorem:

Theorem 14. Under the model assumptions in (1) with 𝑑 ≤ 𝑛, consider the ordinary least square estimator 𝑤̂OLS =

(𝑋𝑇𝑋 )−1𝑋𝑇𝑌 and denote 𝛾 = 𝑑/𝑛. Assume that 𝛾 ≤ 0.999, then with probability at least 1 − 𝛿 , it holds that

𝐿(𝑤̂OLS) −
𝜎2

1 − 𝛾 ≲ 𝜎
2

√
𝛾 log(36/𝛿)

𝑛
.

The full proof can be found in Appendix E. As we can see from Theorem 13, the variance of 𝐿(𝑤̂OLS) is of order
𝑂 (1/

√
𝑛) when 𝑑 is proportional to 𝑛, and of order 𝑂 (1/𝑛) when 𝑑 is fixed. In both cases, the expectation is close to

𝜎2/(1 − 𝛾). Theorem 14 shows exactly this and interpolates the two regimes: when 𝛾 is of constant order, then we

recover the 𝑂 (1/
√
𝑛) rate, but when 𝑑 is fixed, 𝛾 = 𝑂 (1/𝑛) and so we can accelerate the convergence rate to 𝑂 (1/𝑛).

Remark 6. Hastie et al. [18] provide a similar expectation calculation. On one hand, their results are more general in

the sense that they do not assume the data is Gaussian, although the data is “almost Gaussian” because they require

the existence of high-order moments. On the other hand, their results are asymptotic because their proof relies on the

Marchenko-Pastur law and requires proportional scaling. In contrast, we obtain finite-sample bounds. After posting an

initial preprint of this work, we learned that [15] has independently obtained a result equivalent to Theorem 13, also

using the moments of the inverse Wishart distribution.

7 DISCUSSION

In this work, we push the limit of what bounds with an optimistic rate can do. At least for well-specified linear regression

with Gaussian data, we see that they are flexible enough to simultaneously understand interpolation learning and

recover many classical results from compressed sensing, high dimensional statistics and learning theory. In the context

of benign overfitting, not only can we establish the consistency of the minimal norm interpolator, we actually show

that any predictor with a sufficiently low norm and training error can achieve consistency. In a variety of applications,

we use our main theorem to obtain bounds with very sharp constants and our general theory suggests that we can

always get a nearly optimal analysis for ERM in any convex set by choosing the complexity functional 𝐹 in Theorem 1

based on local Gaussian width.

A natural next step will be to relax the Gaussian assumption in our model (1) and also to consider situations where

our linear model is misspecified in the sense that the Bayes optimal predictor is not linear. One of the key advantages

of past works on uniform convergence, including the optimistic rate bound of Srebro et al. [39], is that they do not

need to make strong parameteric assumptions on the data distribution. Though the Gaussian width formulation of

optimistic rate bounds, as in (8), seems to crucially depend on the data being Gaussian, the connection to Rademacher

complexity gives us hope that a version of our theory might apply to non-Gaussian data. (Some care must be taken in

precisely formulating such a bound, due to the negative results discussed by Foygel and Srebro [16], Srebro et al. [39].)

We also think that extending our results to generalized linear models, such as analyzing benign overfitting in linear

classification, is an interesting direction. At least when the features are Gaussian, our techniques should be applicable;

we leave this to future work.
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A PRELIMINARIES

Concentration of Lipschitz functions. Recall that a function 𝑓 : R𝑛 → R is 𝐿-Lipschitz with respect to the norm ∥·∥ if
it holds for all 𝑥,𝑦 ∈ R𝑛 that |𝑓 (𝑥) − 𝑓 (𝑦) | ≤ 𝐿∥𝑥 − 𝑦∥. We use the concentration of Lipschitz functions of a Gaussian.

Theorem 15 ([46], Theorem 3.25). If 𝑓 is 𝐿-Lipschitz with respect to the Euclidean norm and 𝑍 ∼ 𝑁 (0, 𝐼𝑛), then

Pr( |𝑓 (𝑍 ) − E 𝑓 (𝑍 ) | ≥ 𝑡) ≤ 2𝑒−𝑡
2/2𝐿2 . (52)

The proof of the following results can be found in Koehler et al. [21].

Lemma 2. Suppose that 𝑍 ∼ 𝑁 (0, 𝐼𝑛). Then

Pr(
��∥𝑍 ∥2 − √

𝑛
�� ≥ 𝑡) ≤ 4𝑒−𝑡

2/4 . (53)

Lemma 3. Suppose that 𝑆 is a fixed subspace of dimension 𝑑 in R𝑛 with 𝑛 ≥ 4, 𝑃𝑆 is the orthogonal projection onto 𝑆 , and

𝑉 is a spherically symmetric random vector (i.e. 𝑉 /∥𝑉 ∥2 is uniform on the sphere). Then

∥𝑃𝑆𝑉 ∥2
∥𝑉 ∥2

≤
√
𝑑/𝑛 + 2

√
log(2/𝛿)/𝑛. (54)

with probability at least 1 − 𝛿 . Conditional on this inequality holding, we therefore have uniformly for all 𝑠 ∈ 𝑆 that

|⟨𝑠,𝑉 ⟩| = |⟨𝑠, 𝑃𝑆𝑉 ⟩| ≤ ∥𝑠 ∥2∥𝑃𝑆𝑉 ∥2 ≤ ∥𝑠 ∥2∥𝑉 ∥2
(√
𝑑/𝑛 + 2

√
log(2/𝛿)/𝑛)

)
. (55)

Theorem 16 ((Convex) Gaussian Minmax Theorem; [17, 43]). Let 𝑍 : 𝑛×𝑑 be a matrix with i.i.d. 𝑁 (0, 1) entries and
suppose𝐺 ∼ 𝑁 (0, 𝐼𝑛) and𝐻 ∼ 𝑁 (0, 𝐼𝑑 ) are independent of𝑍 and each other. Let 𝑆𝑤 , 𝑆𝑢 be compact sets and𝜓 : 𝑆𝑤×𝑆𝑢 → R
be an arbitrary continuous function. Define the Primary Optimization (PO) problem

Φ(𝑍 ) := min

𝑤∈𝑆𝑤
max

𝑢∈𝑆𝑢
⟨𝑢, 𝑍𝑤⟩ +𝜓 (𝑤,𝑢) (56)

and the Auxiliary Optimization (AO) problem

𝜙 (𝐺,𝐻 ) := min

𝑤∈𝑆𝑤
max

𝑢∈𝑆𝑢
∥𝑤 ∥2⟨𝐺,𝑢⟩ + ∥𝑢∥2⟨𝐻,𝑤⟩ +𝜓 (𝑤,𝑢) . (57)

Under these assumptions, Pr(Φ(𝑍 ) < 𝑐) ≤ 2 Pr(𝜙 (𝐺,𝐻 ) ≤ 𝑐) for any 𝑐 ∈ R.
Furthermore, if we suppose that 𝑆𝑤 , 𝑆𝑢 are convex sets and𝜓 (𝑤,𝑢) is convex in𝑤 and concave in 𝑢, then Pr(Φ(𝑍 ) >

𝑐) ≤ 2 Pr(𝜙 (𝐺,𝐻 ) ≥ 𝑐).

B PROOFS FOR SECTION 3

B.1 Proof of Theorem 1

To apply the Gaussian Minimax Theorem, we first formulate the quantity of interest as an optimization problem in

terms of a random matrix with 𝑁 (0, 1) entries.

Lemma 4. Under the model assumptions in (1), let 𝐹 be an arbitrary function and 𝛽 be any positive real number. Define

the primary optimization problem (PO) as

Φ = sup

𝑤
inf

∥𝜆 ∥
2
=1

⟨𝑍𝑤, 𝜆⟩ +
√

1

1 + 𝛽

(
𝑛𝜎2 + 𝑛 ∥𝑤 ∥2

2

)
− ⟨𝜉, 𝜆⟩ − 𝐹 (Σ−1/2𝑤 +𝑤∗) (58)
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where 𝑍 is an 𝑛 × 𝑑 random matrix with i.i.d. standard normal entries independent of 𝜉 and each other. Then it holds that

sup

𝑤

√
1

1 + 𝛽 · 𝐿(𝑤) −
(√
𝐿̂(𝑤) + 𝐹 (𝑤)

√
𝑛

)
D
=

1

√
𝑛
Φ (59)

Proof. By our definition of population and empirical loss, we have

sup

𝑤

√
1

1 + 𝛽 · 𝐿(𝑤) −
(√
𝐿̂(𝑤) + 𝐹 (𝑤)

√
𝑛

)
= sup

𝑤

√
1

1 + 𝛽

(
𝜎2 + ∥𝑤 −𝑤∗∥2Σ

)
−

(
1

√
𝑛
∥𝑌 − 𝑋𝑤 ∥

2
+ 𝐹 (𝑤)

√
𝑛

)
= sup

𝑤
inf

∥𝜆 ∥
2
=1

√
1

1 + 𝛽

(
𝜎2 + ∥𝑤 −𝑤∗∥2Σ

)
−

(
1

√
𝑛
⟨𝑌 − 𝑋𝑤, 𝜆⟩ + 𝐹 (𝑤)

√
𝑛

)
By equality in distribution, we can write 𝑋 = 𝑍Σ1/2. Using a change of variables, the above becomes

sup

𝑤
inf

∥𝜆 ∥
2
=1

√
1

1 + 𝛽

(
𝜎2 + ∥𝑤 ∥2

2

)
−

(
1

√
𝑛
⟨𝜉 − 𝑍𝑤, 𝜆⟩ + 𝐹 (Σ

−1/2𝑤 +𝑤∗)
√
𝑛

)
=

1

√
𝑛

sup

𝑤
inf

∥𝜆 ∥
2
=1

⟨𝑍𝑤, 𝜆⟩ +
√

1

1 + 𝛽

(
𝑛𝜎2 + 𝑛 ∥𝑤 ∥2

2

)
− ⟨𝜉, 𝜆⟩ − 𝐹 (Σ−1/2𝑤 +𝑤∗)

□

To apply Theorem 16, we will use a truncation argument. The following result is an exercise in real analysis, which

we include for completeness.

Lemma 5. Let 𝑓 : R𝑑 → R be an arbitrary function, then it holds that

lim

𝑟→∞
sup

∥𝑤 ∥
2
≤𝑟
𝑓 (𝑤) = sup

𝑤
𝑓 (𝑤) (60)

Proof. We consider two cases:

(1) Suppose that sup𝑤 𝑓 (𝑤) = ∞, then for any 𝑀 > 0, there exists 𝑥𝑀 such that 𝑓 (𝑥𝑀 ) > 𝑀 . Hence for any

𝑟 > ∥𝑥𝑀 ∥
2
, it holds that

sup

∥𝑤 ∥
2
≤𝑟
𝑓 (𝑤) > 𝑀 =⇒ lim inf

𝑟→∞
sup

∥𝑤 ∥
2
≤𝑟
𝑓 (𝑤) ≥ 𝑀

As the choice of𝑀 is arbitrary, we have lim𝑟→∞ sup∥𝑤 ∥
2
≤𝑟 𝑓 (𝑤) = ∞ as desired.

(2) Suppose that sup𝑤 𝑓 (𝑤) = 𝑀 < ∞, then for any 𝜖 > 0, there exists 𝑥𝜖 such that 𝑓 (𝑥𝜖 ) > 𝑀 − 𝜖 . Hence for any
𝑟 > ∥𝑥𝜖 ∥2, it holds that

sup

∥𝑤 ∥
2
≤𝑟
𝑓 (𝑤) > 𝑀 − 𝜖 =⇒ lim inf

𝑟→∞
sup

∥𝑤 ∥
2
≤𝑟
𝑓 (𝑤) ≥ 𝑀 − 𝜖

As the choice of 𝜖 is arbitrary, we have lim inf𝑟→∞ sup∥𝑤 ∥
2
≤𝑟 𝑓 (𝑤) ≥ 𝑀 . On the other hand, it must be the case

(by definition of supremum) that

sup

∥𝑤 ∥
2
≤𝑟
𝑓 (𝑤) ≤ 𝑀 =⇒ lim sup

𝑟→∞
sup

∥𝑤 ∥
2
≤𝑟
𝑓 (𝑤) ≤ 𝑀

Consequently, the limit of sup∥𝑤 ∥
2
≤𝑟 𝑓 (𝑤) exists and equals𝑀 . □
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Lemma 6. Let 𝐺 ∼ 𝑁 (0, 𝐼𝑛), 𝐻 ∼ 𝑁 (0, 𝐼𝑑 ) be Gaussian vectors independent of 𝑍, 𝜉 and each other. Define the auxiliary

problem (AO) as

𝜙 = sup

𝑤

√
1

1 + 𝛽

(
𝑛𝜎2 + 𝑛 ∥𝑤 ∥2

2

)
− ∥𝐺 ∥𝑤 ∥

2
− 𝜉 ∥

2
+ ⟨𝐻,𝑤⟩ − 𝐹 (Σ−1/2𝑤 +𝑤∗) . (61)

Suppose that 𝐹 is continuous, then it holds that for any 𝑡 ∈ R

Pr(Φ > 𝑡 | 𝜉) ≤ 2 Pr(𝜙 ≥ 𝑡 | 𝜉), (62)

and taking expectations we have

Pr(Φ > 𝑡) ≤ 2 Pr(𝜙 ≥ 𝑡) . (63)

Proof. First, by (58) define the truncated PO as

Φ𝑟 = sup

∥𝑤 ∥≤𝑟
inf

∥𝜆 ∥
2
=1

⟨𝑍𝑤, 𝜆⟩ +
√

1

1 + 𝛽

(
𝑛𝜎2 + 𝑛 ∥𝑤 ∥2

2

)
− ⟨𝜉, 𝜆⟩ − 𝐹 (Σ−1/2𝑤 +𝑤∗), (64)

and the corresponding AO is

𝜙𝑟 = sup

∥𝑤 ∥≤𝑟
inf

∥𝜆 ∥
2
=1

∥𝑤 ∥
2
⟨𝐺, 𝜆⟩ + ∥𝜆∥

2
⟨𝐻,𝑤⟩ +

√
1

1 + 𝛽

(
𝑛𝜎2 + 𝑛 ∥𝑤 ∥2

2

)
− ⟨𝜉, 𝜆⟩ − 𝐹 (Σ−1/2𝑤 +𝑤∗)

= sup

∥𝑤 ∥≤𝑟
⟨𝐻,𝑤⟩ − ∥𝐺 ∥𝑤 ∥

2
− 𝜉 ∥

2
+

√
1

1 + 𝛽

(
𝑛𝜎2 + 𝑛 ∥𝑤 ∥2

2

)
− 𝐹 (Σ−1/2𝑤 +𝑤∗) .

(65)

By Lemma 5, with probability one, we have Φ𝑟 and 𝜙𝑟 monotonically increase to Φ and 𝜙 as 𝑟 → ∞, respectively. By

continuity of measure (from below), it holds that

Pr(Φ > 𝑡 | 𝜉) = Pr

(
lim

𝑟→∞
Φ𝑟 > 𝑡 | 𝜉

)
≤ Pr (∪𝑟 ∈N ∩𝑅≥𝑟 Φ𝑅 > 𝑡 | 𝜉)

= lim

𝑟→∞
Pr (∩𝑅≥𝑟Φ𝑅 > 𝑡 | 𝜉) = lim

𝑟→∞
Pr (Φ𝑟 > 𝑡 | 𝜉)

By Theorem 16, it follows that

Pr (Φ𝑟 > 𝑡 | 𝜉) = Pr (−Φ𝑟 < −𝑡 | 𝜉) ≤ 2 Pr (−𝜙𝑟 < −𝑡 | 𝜉) ≤ 2 Pr(𝜙 > 𝑡 | 𝜉)

Plugging in the bound above yields the desired conclusion. □

Lemma 7. Let 𝐹 satisfy the condition in Theorem 1 and 𝑛 ≥ 196 log(12/𝛿), then there exists 𝛽 ≤ 14

√
log(12/𝛿)

𝑛 such that

Pr(𝜙 ≥ 0) ≤ 𝛿 ′ + 𝛿 (66)

Proof. For notational simplicity, define

𝛼 := 2

√
log(12/𝛿)

𝑛

𝜌 :=

√
1

𝑛
+ 2

√
log(6/𝛿)

𝑛
.

By a union bound, the following collection of events occur with probability at least 1 − 𝛿 − 𝛿 ′
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(1) By Lemma 2, it holds that

1 − 𝛼 ≤ 1

√
𝑛
∥𝐺 ∥

2
(67)

and

1 − 𝛼 ≤ 1

√
𝑛𝜎

∥𝜉 ∥
2

(68)

(2) By Lemma 3, it holds that

⟨𝜉,𝐺⟩ ≤ 𝜌 ∥𝜉 ∥
2
∥𝐺 ∥

2
(69)

(3) By our assumption on 𝐹 , it holds that uniformly over all𝑤 ∈ R𝑑

⟨𝐻,𝑤⟩ ≤ 𝐹 (Σ−1/2𝑤 +𝑤∗) (70)

Equations (67), (68) and (69) implies that

∥𝐺 ∥𝑤 ∥
2
− 𝜉 ∥2

2
≥ (1 − 𝜌)

(
∥𝐺 ∥2

2
∥𝑤 ∥2

2
+ ∥𝜉 ∥2

2

)
≥ (1 − 𝜌) (1 − 𝛼)2𝑛

(
∥𝑤 ∥2

2
+ 𝜎2

)
Therefore, if we take 1 + 𝛽 = (1− 𝜌)−1 (1− 𝛼)−2, combining with (70) shows that 𝜙 ≤ 0. To simplify the expression of 𝛽 ,

observe that

(1 − 𝜌) (1 − 𝛼)2 ≥ 1 − 2𝛼 − 𝜌.

Finally, it is routine to check that 𝛽 ≤ 14

√
log(12/𝛿)

𝑛 . □

Theorem 1. Under the model assumption in (1), let 𝐹 : R𝑑 → [0,∞] be a function such that for 𝑥 ∼ 𝑁 (0, Σ), with
probability at least 1 − 𝛿 ′, it holds uniformly over all𝑤 ∈ R𝑑 that

⟨𝑤 −𝑤∗, 𝑥⟩ ≤ 𝐹 (𝑤) . (5)

For any 𝛿 > 0, assume 𝑛 ≥ 196 log(12/𝛿). Then there exists 𝛽1 ≤ 14

√
log(12/𝛿)

𝑛 such that with probability at least

1 − 2(𝛿 ′ + 𝛿), it holds uniformly over all𝑤 ∈ R𝑑 that

𝐿(𝑤) ≤ (1 + 𝛽1)
(√
𝐿̂(𝑤) + 𝐹 (𝑤)

√
𝑛

)
2

. (6)

Proof. First, we prove the result under the temporary additional assumption that 𝐹 is continuous. By Lemma 4 and

Lemma 6, we have

Pr

(
∃𝑤 ∈ R𝑑 , 𝐿(𝑤) > (1 + 𝛽)

(√
𝐿̂(𝑤) + 𝐹 (𝑤)

√
𝑛

)
2

)
= Pr

(
sup

𝑤

√
1

1 + 𝛽 · 𝐿(𝑤) −
(√
𝐿̂(𝑤) + 𝐹 (𝑤)

√
𝑛

)
> 0

)
= Pr(Φ > 0) ≤ 2 Pr(𝜙 ≥ 0)

Then Lemma 7 shows that Pr(𝜙 ≥ 0) ≤ 𝛿 ′ + 𝛿 and so the desired event occurs with probability at least 1 − 2(𝛿 ′ + 𝛿).
Now we describe how to remove the extraneous assumption that 𝐹 is continuous. Let 𝛿 ′′ > 0 be arbitrary. With

probability at least 1 − 𝛿 ′′ and using that 𝑥 is equal in law to Σ1/2𝑧 for 𝑧 ∼ 𝑁 (0, 𝐼𝑑 ), we have that ⟨𝑤 − 𝑤∗, 𝑥⟩ ≤
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∥𝑤 −𝑤∗∥Σ (
√
𝑑 + 2

√
log(4/𝛿 ′)) by Lemma 2. So by the union bound, with probability at least 1 − 𝛿 ′ − 𝛿 ′′ we have that

⟨𝑤 −𝑤∗, 𝑥⟩ ≤ min{𝐹 (𝑤), ∥𝑤 −𝑤∗∥Σ (
√
𝑑 + 2

√
log(4/𝛿 ′))}. (71)

Let 𝐹𝛿′′ be the greatest convex minorant of the right hand side of Equation (71). (As discussed below in Remark 7, the

greatest convex minorant of a function 𝑓 is the largest convex function which is everywhere at most 𝑓 . It always exists

since the supremum of convex functions is convex.) If (71) holds for all 𝑥 then ⟨𝑤 −𝑤∗, 𝑥⟩ ≤ 𝐹𝛿′′ (𝑥) as well, by the

defining property of the greatest convex minorant. By Corollary 10.1.1 of [37], 𝐹𝛿′′ is continuous since it is convex and

finite. Therefore, we can derive the desired bound with 𝐹𝛿′′ , which is no larger than 𝐹 , and this holds with probability

at least 1 − 2(𝛿 + 𝛿 ′ + 𝛿 ′′). Taking 𝛿 ′′ → 0 proves the desired result. □

Remark 7. In Theorem 1, if the assumption (5) is satisfied for a function 𝐹 then it is also satisfied for its greatest

convex minorant conv(𝐹 ), which is the largest convex function such that conv(𝐹 ) (𝑤) ≤ 𝐹 (𝑤) for all𝑤 , and replacing 𝐹

by conv(𝐹 ) only makes the conclusion stronger. Also, we note the conclusion can be written in terms of the population

measure 𝜇 and empirical measure 𝜇𝑛 from 𝑛 samples as

∥𝑌 − ⟨𝑤,𝑋 ⟩∥𝐿2 (𝜇) ≤ (1 + 𝛽)1/2
(
∥𝑌 − ⟨𝑤,𝑋 ⟩∥𝐿2 (𝜇𝑛) + 𝐹 (𝑤)/

√
𝑛

)
so it can be interpreted as a lower isometry estimate for the empirical 𝐿2 metric about the point 𝑌 .

B.2 Proof of Theorem 2

For convenience, we restate the theorem below:

Theorem 2. Under the model assumptions in (1), let K be an arbitrary compact set, and take any covariance splitting

Σ = Σ1 ⊕ Σ2. Fixing 𝛿 ≤ 1/4, let 𝛽2 = 32

(√
log(1/𝛿)

𝑛 +
√

rank(Σ1)
𝑛

)
. If 𝑛 is large enough that 𝛽2 ≤ 1, then the following

holds with probability at least 1 − 𝛿 for all𝑤 ∈ K :

𝐿(𝑤) ≤ (1 + 𝛽2)
(√
𝐿̂(𝑤) +

𝑊Σ2 (K)
√
𝑛

+
[
∥𝑤∗∥Σ2 + rad(Σ1/2

2
K)

] √
2 log(32/𝛿)

𝑛

)
2

. (8)

Moreover, a stronger version of the above is also true: it holds that uniformly over all dilation factors 𝛼 ≥ 0 and𝑤 ∈ 𝛼K ,

we have

𝐿(𝑤) ≤ (1 + 𝛽2)
(√
𝐿̂(𝑤) +

𝛼𝑊Σ2 (K)
√
𝑛

+
[
∥𝑤∗∥Σ2 + 𝛼 rad(Σ

1/2
2

K)
] √

2 log(32/𝛿)
𝑛

)
2

. (9)

Proof. First, we show how to choose the complexity function 𝐹 in Theorem 1 and show the result without dilations.

We can write 𝑥 = Σ1/2𝐻 where 𝐻 ∼ 𝑁 (0, 𝐼𝑑 ). For any splitting Σ = Σ1 ⊕ Σ2, let 𝐻1 be the orthogonal projection of 𝐻

onto the span of Σ1. Similarly, we let 𝐻2 be the orthogonal projection of 𝐻 onto the span of Σ2. Then observe that

⟨𝑤∗ −𝑤, 𝑥⟩ = ⟨𝑤∗ −𝑤, Σ1/2
1
𝐻 ⟩ + ⟨𝑤∗ −𝑤, Σ1/2

2
𝐻 ⟩

= ⟨𝑤∗ −𝑤, Σ1/2
1
𝐻1⟩ + ⟨𝑤∗ −𝑤, Σ1/2

2
𝐻2⟩

≤ ∥Σ1/2
1

(𝑤 −𝑤∗)∥2 · ∥𝐻1∥2 + |⟨Σ1/2
2
𝑤∗, 𝐻2⟩| + sup

𝑤∈Σ1/2
2

K
|⟨𝑤,𝐻2⟩|

where the equality is by orthogonality of the split and the inequality is by Cauchy-Schwarz and the definition of

supremum. Next, observe by Lemma 2 that with probability at least 1 − 𝛿/8,

∥𝐻1∥ ≤
√
rank Σ1 + 2

√
log(32/𝛿),
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and by Theorem 15 with probability at least 1 − 𝛿/8

sup

𝑤∈Σ1/2
2

K
|⟨𝑤,𝐻2⟩| ≤𝑊Σ2 (K) + rad(Σ1/2

2
K)

√
2 log(32/𝛿)

and by the standard Gaussian tail bound Pr𝑍∼𝑁 (0,1) ( |𝑍 | ≥ 𝑡) ≤ 2𝑒−𝑡
2/2

, it holds that

|⟨Σ1/2
2
𝑤∗, 𝐻 ⟩| ≤ ∥𝑤∗∥Σ2

√
2 log(32/𝛿) (72)

because the marginal law of ⟨Σ1/2
2
𝑤∗, 𝐻 ⟩ is 𝑁 (0, ∥𝑤∗∥2Σ2 ). Hence, by the union bound we have that with probability at

least 1 − 3𝛿/8,

⟨𝑤∗ −𝑤, 𝑥⟩ ≤ 𝐹 (𝑤) := ∥𝑤∗ −𝑤 ∥Σ1
(√

rank Σ1 + 2

√
log(32/𝛿)

)
+𝑊Σ2 (K) + [∥𝑤∗∥Σ2 + rad(Σ1/2

2
K)]

√
2 log(32/𝛿).

Now applying Theorem 1 with 𝐹 (𝑤) = ∞ outside of K gives, where 𝛽1 is as defined in the statement of that result,√
𝐿(𝑤)
1 + 𝛽1

≤
√
𝐿̂(𝑤) + ∥𝑤∗ −𝑤 ∥Σ1

(√
rank Σ1
𝑛

+ 2

√
log(32/𝛿)

𝑛

)
+
𝑊Σ2 (K)

√
𝑛

+ [∥𝑤∗∥Σ2 + rad(Σ1/2
2

K)]
√

2 log(32/𝛿)
𝑛

.

Observe that ∥𝑤∗ −𝑤 ∥Σ1 ≤ ∥𝑤∗ −𝑤 ∥Σ ≤
√
𝐿(𝑤) so we have(

(1 + 𝛽1)−1/2 −
√

rank Σ1
𝑛

− 2

√
log(32/𝛿)

𝑛

) √
𝐿(𝑤) ≤

√
𝐿̂(𝑤) +

𝑊Σ2 (K)
√
𝑛

+ [∥𝑤∗∥Σ2 + rad(Σ1/2
2

K)]
√

2 log(32/𝛿)
𝑛

and by solving for

√
𝐿(𝑤), we just need to consider 𝛽2 such that(

(1 + 𝛽1)−1/2 −
√

rank Σ1
𝑛

− 2

√
log(32/𝛿)

𝑛

)−2
≤ 1 + 𝛽2 .

The above establishes the result when there is no dilation (𝛼 = 1). Clearly, the same argument also shows the bound

uniformly over all 𝛼 ≥ 0 if we take

𝐹 (𝑤) := ∥𝑤∗ −𝑤 ∥Σ1
(√

rank Σ1 + 2

√
log(32/𝛿)

)
+ 𝛼 (𝑤)𝑊Σ2 (K) + [∥𝑤∗∥Σ2 + 𝛼 (𝑤) rad(Σ1/2

2
K)]

√
2 log(32/𝛿)

where 𝛼 (𝑤) is the infimum over all 𝛼 such that𝑤 ∈ 𝛼K . □

B.3 Proof of Theorem 3

The following Lemma abstracts the key deterministic argument from the setting of Theorem 3 to essentially any

application of Theorem 1; the key insight is that a generalization bound of the form (73) is exactly of the right form to

explain flatness along the regularization path. Note that in the below Lemma, the function 𝐹 is assumed to be convex

which is always without loss of generality when applying Theorem 1, see Remark 7.

Lemma 8. Suppose there exist a convex function 𝐹 and 𝜖 ∈ (0, 1) such that:

(1) for all𝑤 ∈ R𝑑 , it holds that √
𝐿(𝑤) ≤ (1 + 𝜖)

(√
𝐿̂(𝑤) + 𝐹 (𝑤)

√
𝑛

)
. (73)

(2) 𝜖 is sufficiently large that √
𝐿̂(𝑤∗) = ∥𝜉 ∥2√

𝑛
≤ (1 + 𝜖)𝜎 and

𝐹 (𝑤∗)
√
𝑛

≤ 𝜖. (74)
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(3) for some𝑤 ′ ∈ R𝑑 , it holds that

𝐿̂(𝑤 ′) = 0 and
𝐹 (𝑤 ′)
√
𝑛

≤ (1 + 𝜖)𝜎 + 𝜖. (75)

Then for all 𝑅 between 𝐹 (𝑤∗) and 𝐹 (𝑤 ′) and any constrained empirical risk minimizer of the form

𝑤̂𝑅 := arg min

𝐹 (𝑤) ≤𝑅
𝐿̂(𝑤),

we have 𝐿(𝑤̂𝑅) ≤ (𝜎 + 5𝜖 (𝜎 ∨ 1))2.

Proof. For any 𝑅 between 𝐹 (𝑤∗) and 𝐹 (𝑤 ′), we can write

𝑅 = (1 − 𝛼)𝐹 (𝑤∗) + 𝛼𝐹 (𝑤 ′)

for some 𝛼 ∈ [0, 1]. If we define𝑤𝛼 := (1 − 𝛼)𝑤∗ + 𝛼𝑤 ′
accordingly, then by convexity, we have

𝐹 (𝑤𝛼 ) ≤ (1 − 𝛼)𝐹 (𝑤∗) + 𝛼𝐹 (𝑤 ′) = 𝑅

and

𝐿̂(𝑤𝛼 ) =
1

𝑛
∥𝑌 − 𝑋𝑤𝛼 ∥22 =

1

𝑛
(1 − 𝛼)2∥𝑌 − 𝑋𝑤∗∥2

2
= (1 − 𝛼)2𝐿̂(𝑤∗) .

By the definition of𝑤𝑅 , it must be the case that 𝐿̂(𝑤𝑅) ≤ 𝐿̂(𝑤𝛼 ) and so by (73), (74) and (75)√
𝐿(𝑤𝑅) ≤ (1 + 𝜖)

(√
𝐿̂(𝑤𝑅) +

𝐹 (𝑤𝑅)√
𝑛

)
≤ (1 + 𝜖)

(√
𝐿̂(𝑤𝛼 ) +

𝑅
√
𝑛

)
= (1 + 𝜖)

(
(1 − 𝛼)

√
𝐿̂(𝑤∗) + (1 − 𝛼)𝐹 (𝑤∗) + 𝛼𝐹 (𝑤 ′)

√
𝑛

)
≤ (1 + 𝜖) ((1 − 𝛼) (1 + 𝜖)𝜎 + (1 − 𝛼)𝜖 + 𝛼 ((1 + 𝜖)𝜎 + 𝜖))

= (1 + 𝜖)2𝜎 + 𝜖 (1 + 𝜖)

≤ 𝜎 + 5𝜖 (𝜎 ∨ 1) . □

Theorem 3. Under the model assumptions in (1), let ∥ · ∥ be an arbitrary norm on R𝑑 and consider the complexity

functional 𝐶Σ and the constrained ERM 𝑤̂𝑅 given by (13) and (14). Suppose there is a split Σ = Σ1 ⊕ Σ2 and 𝜖 > 0 such

that with probability at least 1 − 𝛿 , it holds that√
𝐿̂(𝑤∗) ≤ (1 + 𝜖)𝜎 and 𝐶Σ2 (∥𝑤∗∥) ≤ 𝜖 (15)

and there exists𝑤 ′ ∈ R𝑑 such that

𝐿̂(𝑤 ′) = 0 and 𝐶Σ2 (∥𝑤 ′∥) ≤ (1 + 𝜖)𝜎 + 𝜖. (16)

Then, with probability at least 1 − 2𝛿 , it holds uniformly over any 𝑅 ≥ ∥𝑤∗∥ that

𝐿(𝑤̂𝑅) ≤ (𝜎 + 5(𝜖 + 𝛽2) (𝜎 ∨ 1))2 . (17)

for the same choice of 𝛽2 as in Theorem 2.
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Proof. Notice that 𝐶Σ2 is a monotone increasing function in ∥𝑤 ∥, so without loss of generality we can assume that

𝑤 ′
is the minimal norm interpolator. By (9) of Theorem 2 and condition (16), we have

𝐿(𝑤 ′) ≤ (1 + 𝛽2) ((1 + 𝜖)𝜎 + 𝜖)2

and it is easy to see this upper bound is no larger than the desired upper bound. By our convention, if 𝑅 > ∥𝑤 ′∥ then
𝑤̂𝑅 = 𝑤 ′

and we are done. So we only need to consider the case when ∥𝑤∗∥ ≤ 𝑅 ≤ ∥𝑤 ′∥.
To apply Lemma 8, consider 𝐹 (𝑤) =

√
𝑛𝐶Σ2 (∥𝑤 ∥) and let 𝜖 + 𝛽2 plays the role of 𝜖 . Clearly, (73), (74) and (75) are

satisfied by Theorem 2 and our assumptions (15) and (16). Since𝐶Σ2 is monotone increasing, the condition that ∥𝑤 ∥ ≤ 𝑅

is the same as 𝐹 (𝑤) ≤
√
𝑛𝐶Σ2 (𝑅) and 𝐹 (𝑤∗) ≤

√
𝑛𝐶Σ2 (𝑅) ≤ 𝐹 (𝑤 ′). We can conclude the proof by a union bound. □

Corollary 2. Let 𝜎 > 0 be fixed. Under the assumptions of Theorem 3 with ∥ · ∥ as the Euclidean norm, suppose that

Σ = Σ(𝑛) is a sequence of covariance matrices with splits Σ = Σ1 ⊕ Σ2 satisfying the benign overfitting conditions (12).

Then it holds that

sup

𝑅≥∥𝑤∗ ∥2
𝐿(𝑤̂𝑅) → 𝜎2 in probability. (18)

Proof. By Lemma 2, with probability at least 1 − 𝛿/2, we have
√
𝐿̂(𝑤∗) ≤

(
1 + 2

√
log(8/𝛿)

𝑛

)
𝜎 . Theorem 2 and 3 of

Koehler et al. [21] shows that we can pick𝑤 ′
to be the minimal ℓ2 norm interpolator, and there exists

𝛾 ≲

√
log(1/𝛿)

𝑛
+

√
log(1/𝛿)
𝑟 (Σ2)

+ 𝑛 log(1/𝛿)
𝑅(Σ2)

such that with probability at least 1 − 𝛿/2, we have

𝐶Σ2 (∥𝑤 ′∥2) ≤ (1 + 𝛾)
(
𝜎 + ∥𝑤∗∥2

√
Tr(Σ2)
𝑛

)
.

So we can take 𝜖 to be the maximum of 2

√
log(8/𝛿)

𝑛 ,𝐶Σ2 (∥𝑤∗∥2), 𝛾 and (1 +𝛾)∥𝑤∗∥2
√

Tr(Σ2)
𝑛 . We can apply Theorem 3

and observe that 𝜖 + 𝛽2 → 0 under the benign overfitting conditions (12). □

C PROOFS FOR SECTION 4

C.1 Optimally-tuned regularized regression

Corollary 3. Under the assumptions of Theorem 2, consider the regularized regression estimators 𝑤̂𝜆 as in (20) with an

arbitrary norm ∥ · ∥. With probability at least 1 − 𝛿 , there exists a 𝜆∗ ≥ 0 such that

𝐿(𝑤̂𝜆∗ ) ≤ (1 + 3𝛽2)
(
𝜎 + ∥𝑤∗∥

√
𝑛

(
E

𝑥∼N(0,Σ2)
∥𝑥 ∥∗ + sup

∥𝑢 ∥≤1
∥𝑢∥Σ2 ·

√
8 log(36/𝛿)

))
2

. (21)

Hence, we have 𝐿(𝑤̂𝜆∗ ) → 𝜎2 in probability if

rank(Σ1)
𝑛

→ 0,
∥𝑤∗∥ · E𝑥∼N(0,Σ2) ∥𝑥 ∥∗√

𝑛
→ 0, and

∥𝑤∗∥ · sup∥𝑢 ∥≤1 ∥𝑢∥Σ2√
𝑛

→ 0. (22)

Proof. By comparing the KKT conditions, it is easy to see that there is some choice of 𝜆∗ such that

𝑤̂𝜆∗ = argmin

𝐿̂ (𝑤) ≤ ∥𝜉 ∥2/𝑛
∥𝑤 ∥.
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Since 𝐿̂(𝑤∗) = ∥𝜉 ∥2/𝑛, it follows that ∥𝑤̂𝜆∗ ∥ ≤ ∥𝑤∗∥. To apply Theorem 2, we considerK = {𝑤 : ∥𝑤 ∥ ≤ 1} and observe
that

rad(Σ1/2
2

K) = sup

∥𝑤 ∥≤1
∥𝑤 ∥Σ2 and ∥𝑤∗∥Σ2 ≤ ∥𝑤∗∥ · sup

∥𝑤 ∥≤1
∥𝑤 ∥Σ2 .

Plugging in (9), by Lemma 2 and a union bound, we obtain

𝐿(𝑤̂𝜆∗ ) ≤ (1 + 𝛽2)
(√
𝐿̂(𝑤̂𝜆∗ ) +

∥𝑤̂𝜆∗ ∥ · E ∥𝑥 ∥∗√
𝑛

+
[
∥𝑤∗∥Σ2 + ∥𝑤̂𝜆∗ ∥ · sup

∥𝑤 ∥≤1
∥𝑤 ∥Σ2

] √
2 log(36/𝛿)

𝑛

)
2

≤ (1 + 𝛽2)
(
∥𝜉 ∥2√
𝑛

+ ∥𝑤∗∥ · E ∥𝑥 ∥∗√
𝑛

+ ∥𝑤∗∥ · sup

∥𝑤 ∥≤1
∥𝑤 ∥Σ2 ·

√
8 log(36/𝛿)

𝑛

)
2

≤ (1 + 𝛽2)
((
1 + 2

√
log(36/𝛿)

𝑛

)
𝜎 + ∥𝑤∗∥ · E ∥𝑥 ∥∗√

𝑛
+ ∥𝑤∗∥ · sup

∥𝑢 ∥≤1
∥𝑢∥Σ2 ·

√
8 log(36/𝛿)

𝑛

)
2

It is routine to check that (1 + 𝛽2)
(
1 + 2

√
log(36/𝛿)

𝑛

)
2

≤ 1 + 3𝛽2 and the proof is complete. □

C.2 LASSO

Lemma 1. Suppose 𝑤∗ is 𝑘-sparse, i.e. supported on coordinate set 𝑆 ⊂ [𝑑] with |𝑆 | ≤ 𝑘 . Every 𝑤 with ∥𝑤 ∥1 ≤ ∥𝑤∗∥1
satisfies

∥(𝑤 −𝑤∗)𝑆𝐶 ∥1 ≤ ∥(𝑤∗ −𝑤𝑆 )∥1 . (25)

Proof. Note that over this set, we have

∥(𝑤 −𝑤∗)𝑆𝐶 ∥1 = ∥𝑤𝑆𝐶 ∥1 = ∥𝑤 ∥1 − ∥𝑤𝑆 ∥1 ≤ ∥𝑤∗∥1 − ∥𝑤𝑆 ∥1 ≤ ∥(𝑤∗ −𝑤𝑆 )∥1

where the first inequality uses ∥𝑤 ∥1 ≤ ∥𝑤∗∥1 and the second inequality is the triangle inequality. □

Theorem 4. Under the model assumptions in (1), additionally assume that:

(1) 𝑤∗ is a 𝑘-sparse vector.

(2) For 𝑆 ⊂ [𝑑] the support of𝑤∗, the covariance matrix Σ satisfies the 𝑆-compatibility condition.

(3) The number of samples 𝑛 satisfies

𝑛 >
32max𝑖 Σ𝑖𝑖
𝜙2 (Σ, 𝑆)

· 𝑘 log
(
32𝑑

𝛿

)
.

Then, for all𝑤 satisfying ∥𝑤 ∥1 ≤ ∥𝑤∗∥1 and 𝐿̂(𝑤) ≤ (1 + 𝜖)𝜎2 for an arbitrary 𝜖 , we have

𝐿(𝑤) − 𝜎2 ≲ (𝛽1 + 𝜖)𝜎2 + (1 + 𝜖) max𝑖 Σ𝑖𝑖
𝜙 (Σ, 𝑆)2

· 𝜎
2𝑘 log(32𝑑/𝛿)

𝑛
, (27)

where 𝛽1 = 𝑂 (
√
log(1/𝛿)/𝑛) is as defined in Theorem 1. In particular, when 𝜎 = 0 we have that ∥𝑤 −𝑤∗∥Σ = 0, and so if

Σ is positive definite then we have𝑤 = 𝑤∗ (exact recovery).

Proof. We start with the application of Theorem 1 as in Example 2. Observe that for 𝑥 ∼ 𝑁 (0, Σ) we have by

Lemma 1, the compatibility condition, the standard Gaussian tail bound and the union bound that with probability at
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least 1 − 𝛿/8,

⟨𝑤 −𝑤∗, 𝑥⟩ ≤ ∥𝑤 −𝑤∗∥1∥𝑥 ∥∞ ≤ 2∥(𝑤 −𝑤∗)𝑆 ∥1∥𝑥 ∥∞

≤ 2

𝑘1/2∥𝑤 −𝑤∗∥Σ
𝜙 (Σ, 𝑆) max

𝑖

√
2Σ𝑖𝑖 log(16𝑑/𝛿)

(76)

so applying Theorem 1 with 𝐹 (𝑤) equal to the right hand side of (76) gives

𝜎2 + ∥𝑤 −𝑤∗∥2Σ = 𝐿(𝑤) ≤ (1 + 𝛽1)
(√
𝐿̂(𝑤) + 2𝑘1/2

𝜙 (Σ, 𝑆) ∥𝑤 −𝑤∗∥Σ max

𝑖

√
2Σ𝑖𝑖 log(32𝑑/𝛿)/𝑛

)
2

≤ (1 + 𝛽1)
(
𝜎
√
1 + 𝜖 + 2𝑘1/2

𝜙 (Σ, 𝑆) ∥𝑤 −𝑤∗∥Σ max

𝑖

√
2Σ𝑖𝑖 log(32𝑑/𝛿)/𝑛

)
2

For a sufficiently large 𝑛, we have 𝛽1 ≤ 1. Expanding the square and rearranging gives

∥𝑤 −𝑤∗∥2Σ ≤ [𝛽1 + 𝜖 + 𝜖𝛽1]𝜎2 + 8𝜎

√
𝑘 (1 + 𝜖)
𝜙 (Σ, 𝑆) ∥𝑤 −𝑤∗∥Σ max

𝑖

√
2Σ𝑖𝑖 log(32𝑑/𝛿)/𝑛

+ 16𝑘 max𝑖 Σ𝑖𝑖 log(32𝑑/𝛿)
𝜙 (Σ, 𝑆)2

·
∥𝑤 −𝑤∗∥2Σ

𝑛

and using the assumption on 𝑛 to rearrange the last term gives

∥𝑤 −𝑤∗∥2Σ ≤ 2[𝛽1 + 𝜖 + 𝜖𝛽1]𝜎2 + 16𝜎

√
𝑘 (1 + 𝜖)
𝜙 (Σ, 𝑆) ∥𝑤 −𝑤∗∥Σ max

𝑖

√
2Σ𝑖𝑖 log(32𝑑/𝛿)/𝑛

≤ 4[𝛽1 + 𝜖]𝜎2 +

√
512𝜎2𝑘 (1 + 𝜖)max𝑖 Σ𝑖𝑖 log(32𝑑/𝛿)

𝜙 (Σ, 𝑆)2𝑛
· ∥𝑤 −𝑤∗∥Σ .

Solving this quadratic equation, it is not to difficult to check that

∥𝑤 −𝑤∗∥2Σ ≤ 8[𝛽1 + 𝜖]𝜎2 +
512(1 + 𝜖)max𝑖 Σ𝑖𝑖

𝜙 (Σ, 𝑆)2
𝜎2𝑘 log(32𝑑/𝛿)

𝑛

which is the desired result. □

Remark 8 (Generalization Bound for Larger Cones). For simplicity, in the above analysis we gave a generalization

bound for predictors𝑤 satisfying ∥𝑤 ∥1 ≤ ∥𝑤∗∥1, or more generally ∥(𝑤 −𝑤∗)𝑆𝐶 ∥1 ≤ ∥(𝑤 −𝑤∗)𝑆 ∥1, which covers the

case of the LASSO with oracle regularization commonly considered in the literature [see, e.g., 48]. In situations where

adaptivity to the unknown value of ∥𝑤∗∥1 is important, the relevant predictor 𝑤 may only be guaranteed to satisfy

the weaker bound ∥(𝑤 −𝑤∗)𝑆𝐶 ∥1 ≤ 𝐶 ∥(𝑤 −𝑤∗)𝑆 ∥1 for some 𝐶 > 1 and the analogous version of the compatibility

condition/restricted eigenvalue condition over this cone is assumed [see, e.g., 10, 36, 45, 50]; adopting the analysis to

predictors in this larger cone is straightforward and we omit the details.

C.3 OLS

The following training error bounds are standard, which we include for completeness.

Lemma 9. Under the model assumptions in (1) with 𝑑 ≤ 𝑛, consider the ordinary least square estimator 𝑤̂OLS =

(𝑋𝑇𝑋 )−1𝑋𝑇𝑌 . With probability at least 1 − 𝛿 , it holds that√
𝐿̂(𝑤̂OLS) ≤ 𝜎

(√
1 − 𝑑

𝑛
+ 2

√
log(4/𝛿)

𝑛

)
(77)
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Similarly, with probability at least 1 − 𝛿 , it holds that

𝑤̂OLS −𝑤∗


Σ̂ ≤ 𝜎

(√
𝑑

𝑛
+ 2

√
log(4/𝛿)

𝑛

)
(78)

Proof. By ourmodel assumptions, we canwrite 𝑤̂OLS = 𝑤∗+(𝑋𝑇𝑋 )−1𝑋𝑇 𝜉 , and so𝑌−𝑋𝑤̂OLS = (𝐼−𝑋 (𝑋𝑇𝑋 )−1𝑋𝑇 )𝜉 .
Since (𝐼 − 𝑋 (𝑋𝑇𝑋 )−1𝑋𝑇 ) is almost surely an idempotent matrix with rank 𝑛 − 𝑑 , it follows that the distribution of

𝑛𝐿̂(𝑤̂OLS)
𝜎2

=
1

𝜎2
𝜉𝑇 (𝐼 − 𝑋 (𝑋𝑇𝑋 )−1𝑋𝑇 )𝜉,

is a Chi-square distribution with 𝑛 − 𝑑 degrees of freedom. By the same reasoning, the distribution of

𝑛 ∥𝑤̂OLS −𝑤∗∥2
Σ̂

𝜎2
=

1

𝜎2
𝜉𝑇𝑋 (𝑋𝑇𝑋 )−1𝑋𝑇 𝜉

is a Chi-square distribution with 𝑑 degrees of freedom. By Lemma 2, with probability at least 1 − 𝛿 , it holds that
√
𝑛

𝜎

√
𝐿̂(𝑤̂OLS) ≤

√
𝑛 − 𝑑 + 2

√
log(4/𝛿).

Similarly, we have √
𝑛

𝜎



𝑤̂OLS −𝑤∗


Σ̂ ≤

√
𝑑 + 2

√
log(4/𝛿).

Rearranging the terms conclude the proof. □

Theorem 5. Under the model assumptions in (1), let 𝛾 = 𝑑/𝑛 < 1. There exists some 𝜖 ≲
(
log(36/𝛿)

𝑛

)
1/2

such that for all

sufficiently large 𝑛, with probability 1 − 𝛿 it holds uniformly for all𝑤 ∈ R𝑑 that������√𝐿(𝑤) − 𝜎2 −

√
𝛾𝐿̂(𝑤)
(1 − 𝛾)2

������ ≤ 𝜖
√
𝐿̂(𝑤) +

√
1

1 − 𝛾

(
𝐿̂(𝑤)
1 − 𝛾 − 𝜎2

)
+ 𝜖𝐿̂(𝑤) . (29)

For the empirical risk minimizer 𝑤̂OLS = (𝑋𝑇𝑋 )−1𝑋𝑇𝑌 , the right hand side of (29) is approximately zero because we also

have

𝐿̂(𝑤̂OLS) ≤ 𝜎2 (1 − 𝛾) + 𝜎2𝜖
√
1 − 𝛾 . (30)

Therefore, we obtain the following generalization bound:

𝐿(𝑤̂OLS) −
𝜎2

1 − 𝛾 ≲ 𝜎
2

(
log(36/𝛿)

𝑛

)
1/4

. (31)

Proof. By Lemma 2, we can pick

𝐹 (𝑤) =
(√
𝑑 + 2

√
log(4/𝛿 ′)

)
∥Σ1/2 (𝑤∗ −𝑤)∥2

=

(√
𝑑 + 2

√
log(4/𝛿 ′)

) √
𝐿(𝑤) − 𝜎2 .

Let 𝛿 ′ = 𝛿/9 and replace 𝛿 by 𝛿/3 in Theorem 1, plug in the estimates from Lemma 9 using confidence level 𝛿/9, then
by a union bound with 𝛾 = 𝑑

𝑛 and 𝜖 =

√
log(36/𝛿)

𝑛 , we have√
𝐿̂(𝑤̂OLS) ≤ 𝜎

√
1 − 𝛾 + 2𝜎𝜖 (79)
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and the bound (6) becomes

𝐿(𝑤) ≤ (1 + 14𝜖)
(√
𝐿̂(𝑤) + (√𝛾 + 2𝜖)

√
𝐿(𝑤) − 𝜎2

)
2

.

We can simplify this by expanding the square

(1 + 14𝜖)−1𝐿(𝑤) ≤ 𝐿̂(𝑤) + (√𝛾 + 2𝜖)2 (𝐿(𝑤) − 𝜎2) + 2(√𝛾 + 2𝜖)
√
𝐿̂(𝑤)

√
𝐿(𝑤) − 𝜎2 .

Rearranging, we arrive at[
(1 + 14𝜖)−1 − (√𝛾 + 2𝜖)2

]
(𝐿(𝑤) − 𝜎2) ≤ 𝐿̂(𝑤) − (1 + 14𝜖)−1𝜎2 + 2(√𝛾 + 2𝜖)

√
𝐿̂(𝑤)

√
𝐿(𝑤) − 𝜎2 .

Note that this is a quadratic equation in terms of

√
𝐿(𝑤) − 𝜎2

(𝐿(𝑤) − 𝜎2) − 2

(√𝛾 + 2𝜖)
√
𝐿̂(𝑤)

(1 + 14𝜖)−1 − (√𝛾 + 2𝜖)2
√
𝐿(𝑤) − 𝜎2 ≤ 𝐿̂(𝑤) − (1 + 14𝜖)−1𝜎2

(1 + 14𝜖)−1 − (√𝛾 + 2𝜖)2
.

We can complete the square, which leads to the following
√
𝐿(𝑤) − 𝜎2 −

(√𝛾 + 2𝜖)
√
𝐿̂(𝑤)

(1 + 14𝜖)−1 − (√𝛾 + 2𝜖)2


2

≤ (1 + 14𝜖)−1
(1 + 14𝜖)−1 − (√𝛾 + 2𝜖)2

(
𝐿̂(𝑤)

(1 + 14𝜖)−1 − (√𝛾 + 2𝜖)2
− 𝜎2

)
Observe that (1 + 14𝜖)−1 − (√𝛾 + 2𝜖)2 = 1 − 𝛾 −𝑂 (𝜖) and so

√
𝛾

1 − 𝛾 ≤
(√𝛾 + 2𝜖)

(1 + 14𝜖)−1 − (√𝛾 + 2𝜖)2
≤

√
𝛾

1 − 𝛾 +𝑂 (𝜖).

We can handle the other terms similarly. Plugging in (79) concludes the proof. □

C.4 Minimum-Norm Interpolation with Isotropic Covariance

Lemma 10. Let 𝑤∗,𝑤 be arbitrary vectors with 𝑤∗ ≠ 0, let 𝑉 be the (one-dimensional) span of 𝑤∗, and let 𝑃𝑉 be the

orthogonal projection onto 𝑉 . Then for any vector 𝑥 ,

⟨𝑤 −𝑤∗, 𝑥⟩ ≤ ∥𝑤 −𝑤∗∥2 · ∥𝑃𝑉 𝑥 ∥2 + ∥𝑥 ∥2

√√√√√
∥𝑤 ∥2

2
−

(
∥𝑤 ∥2

2
+ ∥𝑤∗∥2

2
− ∥𝑤 −𝑤∗∥2

2

)
2

4∥𝑤∗∥2
2

.

Proof. Observe that by expanding the square, we have

∥𝑤 −𝑤∗∥2
2
= ∥𝑤 ∥2

2
+ ∥𝑤∗∥2

2
− 2⟨𝑃𝑉𝑤,𝑤∗⟩

and so rearranging gives the Parallelogram identity

∥𝑤 ∥2
2
+ ∥𝑤∗∥2

2
− ∥𝑤 −𝑤∗∥2

2
= 2⟨𝑃𝑉𝑤,𝑤∗⟩.

Taking absolute value of both sides and using that 𝑃𝑉𝑤 and𝑤∗
are colinear gives��∥𝑤 ∥2

2
+ ∥𝑤∗∥2

2
− ∥𝑤 −𝑤∗∥2

2

�� = 2∥𝑃𝑉𝑤 ∥2∥𝑤∗∥2 .

Combining this with the Pythagorean Theorem, we find

∥𝑃𝑉 ⊥𝑤 ∥2
2
= ∥𝑤 ∥2

2
− ∥𝑃𝑉𝑤 ∥2

2
= ∥𝑤 ∥2

2
−

( ��∥𝑤 ∥2
2
+ ∥𝑤∗∥2

2
− ∥𝑤 −𝑤∗∥2

2

��
2∥𝑤∗∥

)
2

.
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Thus, applying the Cauchy-Schwarz inequality and the above gives

⟨𝑤 −𝑤∗, 𝑥⟩ = ⟨𝑃𝑉 (𝑤 −𝑤∗), 𝑥⟩ + ⟨𝑃𝑉 ⊥𝑤, 𝑥⟩

≤ ⟨𝑃𝑉 (𝑤 −𝑤∗), 𝑥⟩ + ∥𝑃𝑉 ⊥𝑤 ∥2∥𝑥 ∥2

= ⟨𝑤 −𝑤∗, 𝑃𝑉 𝑥⟩ + ∥𝑥 ∥2

√√√√√
∥𝑤 ∥2

2
−

(
∥𝑤 ∥2

2
+ ∥𝑤∗∥2

2
− ∥𝑤 −𝑤∗∥2

2

)
2

4∥𝑤∗∥2
2

≤ ∥𝑤 −𝑤∗∥2 · ∥𝑃𝑉 𝑥 ∥2 + ∥𝑥 ∥2

√√√√√
∥𝑤 ∥2

2
−

(
∥𝑤 ∥2

2
+ ∥𝑤∗∥2

2
− ∥𝑤 −𝑤∗∥2

2

)
2

4∥𝑤∗∥2
2

.

which is the desired inequality. □

Lemma 11. Under the assumptions of Theorem 1 with 𝛾 = 𝑑/𝑛 > 1 and the further assumption that the data has isotropic

covariance Σ = 𝐼𝑑 , there exists 𝜖 ≲
√

log(18/𝛿)
𝑛 such that with probability at least 1 − 𝛿 , we have

∥𝑤 −𝑤∗∥2
2
+ 𝜎2 ≤ (1 + 𝜖)

©­­­«
√
𝐿̂(𝑤) + √

𝛾 ·

√√√√√
∥𝑤 ∥2

2
−

(
∥𝑤 ∥2

2
+ ∥𝑤∗∥2

2
− ∥𝑤 −𝑤∗∥2

2

)
2

4∥𝑤∗∥2
2

ª®®®¬
2

.

Proof. Observe that
⟨𝑤∗,𝑥 ⟩
∥𝑤∗ ∥2 ∼ N(0, 1) and so by a standard Gaussian tail bound, Lemma 2 and a union bound, with

probability at least 1 − 𝛿 , it holds that

∥𝑃𝑉 𝑥 ∥2 =





𝑤∗ (𝑤∗)𝑇

∥𝑤∗∥2
2

𝑥







2

=
|⟨𝑤∗, 𝑥⟩|
∥𝑤∗∥2

≤
√
2 log(6/𝛿)

and

∥𝑥 ∥2 ≤
√
𝑑 + 2

√
log(6/𝛿) .

Combining Lemma 10 with Theorem 1 and another union bound gives

1√
1 + 𝛽1

√
∥𝑤 −𝑤∗∥2

2
+ 𝜎2

≤
√
𝐿̂(𝑤) + ∥𝑤 −𝑤∗∥2

√
2 log(18/𝛿)

𝑛
+

(√
𝑑

𝑛
+ 2

√
log(18/𝛿)

𝑛

) √√√√√
∥𝑤 ∥2

2
−

(
∥𝑤 ∥2

2
+ ∥𝑤∗∥2

2
− ∥𝑤 −𝑤∗∥2

2

)
2

4∥𝑤∗∥2
2

.

Using the fact that ∥𝑤 −𝑤∗∥2 ≤
√
∥𝑤 −𝑤∗∥2

2
+ 𝜎2 and 𝑑 > 𝑛, we have

(
1 + 2

√
log(18/𝛿)

𝑛

)−1 (
1√

1 + 𝛽1
−

√
2 log(18/𝛿)

𝑛

) √
∥𝑤 −𝑤∗∥2

2
+ 𝜎2

≤
√
𝐿̂(𝑤) + √

𝛾 ·

√√√√√
∥𝑤 ∥2

2
−

(
∥𝑤 ∥2

2
+ ∥𝑤∗∥2

2
− ∥𝑤 −𝑤∗∥2

2

)
2

4∥𝑤∗∥2
2

.
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To simplify, there exists 𝜖 ≲

√
log(18/𝛿)

𝑛 such that

1

√
1 + 𝜖

√
∥𝑤 −𝑤∗∥2

2
+ 𝜎2 ≤

√
𝐿̂(𝑤) + √

𝛾 ·

√√√√√
∥𝑤 ∥2

2
−

(
∥𝑤 ∥2

2
+ ∥𝑤∗∥2

2
− ∥𝑤 −𝑤∗∥2

2

)
2

4∥𝑤∗∥2
2

.

and rearranging concludes the proof. □

The generalization bound from Lemma 11 holds for all 𝑤 ; we now show what happens when we specialize it to

interpolators.
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Theorem 6. Under the model assumptions in (1) with 𝛾 = 𝑑/𝑛 > 1 and Σ = 𝐼𝑑 , there exists 𝜖 ≲
(
log(18/𝛿)

𝑛

)
1/2

such that

with probability at least 1 − 𝛿 , the following holds uniformly over all𝑤 such that 𝐿̂(𝑤) = 0:����𝐿(𝑤) −
[
𝜎2 + ∥𝑤 ∥2

2
+

(
1 − 2

(1 + 𝜖)𝛾

)
∥𝑤∗∥2

2

] ���� ≤ 2∥𝑤∗∥2

√√√(
1 − 1

𝛾

) (
∥𝑤 ∥2

2
−

∥𝑤∗∥2
2

𝛾

)
− 𝜎2

𝛾
+ 3𝜖 ∥𝑤 ∥2

2
. (32)

Proof. By Lemma 11, there exists some 𝜖 ≲

√
log(18/𝛿)

𝑛 such that with probability at least 1 − 𝛿 , for all𝑤 such that

𝐿̂(𝑤) = 0 it holds that

∥𝑤 −𝑤∗∥2
2
+ 𝜎2 ≤ (1 + 𝜖)𝛾

(
∥𝑤 ∥2

2
−

(
∥𝑤 ∥2

2
+ ∥𝑤∗∥2

2
− ∥𝑤 −𝑤∗∥2

2

)
2

4∥𝑤∗∥2
2

)
= (1 + 𝜖)𝛾

(
∥𝑤 ∥2

2
−

(∥𝑤 ∥2
2
+ ∥𝑤∗∥2

2
)2 − 2(∥𝑤 ∥2

2
+ ∥𝑤∗∥2

2
)∥𝑤 −𝑤∗∥2

2
+ ∥𝑤 −𝑤∗∥4

2

4∥𝑤∗∥2
2

)
Rearranging, we have

4∥𝑤∗∥2
2
·
∥𝑤 −𝑤∗∥2

2
+ 𝜎2

(1 + 𝜖)𝛾 ≤ 4∥𝑤∗∥2
2
· ∥𝑤 ∥2 − (∥𝑤 ∥2

2
+ ∥𝑤∗∥2

2
)2 + 2(∥𝑤 ∥2

2
+ ∥𝑤∗∥2

2
)∥𝑤 −𝑤∗∥2

2
− ∥𝑤 −𝑤∗∥4

2

Grouping the terms with ∥𝑤 −𝑤∗∥2
2
, we see that

∥𝑤 −𝑤∗∥4
2
+

(
4∥𝑤∗∥2

2

(1 + 𝜖)𝛾 − 2(∥𝑤 ∥2
2
+ ∥𝑤∗∥2

2
)
)
· ∥𝑤 −𝑤∗∥2

2
+ 4∥𝑤∗∥2

2
· 𝜎2

(1 + 𝜖)𝛾 ≤ 4∥𝑤∗∥2
2
· ∥𝑤 ∥2 − (∥𝑤 ∥2

2
+ ∥𝑤∗∥2

2
)2

which is equivalent to

∥𝑤 −𝑤∗∥4
2
− 2

(
∥𝑤 ∥2

2
+

(
1 − 2

(1 + 𝜖)𝛾

)
∥𝑤∗∥2

2

)
· ∥𝑤 −𝑤∗∥2

2
+ (∥𝑤 ∥2

2
− ∥𝑤∗∥2

2
)2 + 4∥𝑤∗∥2

2
· 𝜎2

(1 + 𝜖)𝛾 ≤ 0.

To complete the square, we compute(
∥𝑤 ∥2

2
+

(
1 − 2

(1 + 𝜖)𝛾

)
∥𝑤∗∥2

2

)
2

− (∥𝑤 ∥2
2
− ∥𝑤∗∥2

2
)2 − 4∥𝑤∗∥2

2
· 𝜎2

(1 + 𝜖)𝛾

=

(
1 − 2

(1 + 𝜖)𝛾

)
2

∥𝑤∗∥4
2
+ 2

(
1 − 2

(1 + 𝜖)𝛾

)
∥𝑤 ∥2

2
∥𝑤∗∥2

2
− ∥𝑤∗∥4

2
+ 2∥𝑤 ∥2

2
∥𝑤∗∥2

2
− 4∥𝑤∗∥2

2
· 𝜎2

(1 + 𝜖)𝛾

=

(
4

(1 + 𝜖)2𝛾2
− 4

(1 + 𝜖)𝛾

)
∥𝑤∗∥4

2
+ 4

(
1 − 1

(1 + 𝜖)𝛾

)
∥𝑤 ∥2

2
∥𝑤∗∥2

2
− 4∥𝑤∗∥2

2
· 𝜎2

(1 + 𝜖)𝛾

=4∥𝑤∗∥2
2

[(
1 − 1

(1 + 𝜖)𝛾

) (
∥𝑤 ∥2

2
−

∥𝑤∗∥2
2

(1 + 𝜖)𝛾

)
− 𝜎2

(1 + 𝜖)𝛾

]
≤4∥𝑤∗∥2

2

[(
1 + 𝜖 − 1

𝛾

) (
∥𝑤 ∥2

2
+ 𝜖 ∥𝑤 ∥2

2
−

∥𝑤∗∥2
2

𝛾

)
− 𝜎2

𝛾

]
where in the last step we use (1 + 𝜖)2 ≥ 1 and

𝜎2 (1+𝜖)
𝛾 ≥ 𝜎2

𝛾 . To simplify, it is routine to check that(
1 + 𝜖 − 1

𝛾

) (
∥𝑤 ∥2

2
+ 𝜖 ∥𝑤 ∥2

2
−

∥𝑤∗∥2
2

𝛾

)
−

(
1 − 1

𝛾

) (
∥𝑤 ∥2

2
−

∥𝑤∗∥2
2

𝛾

)
≤ 3𝜖 ∥𝑤 ∥2

2
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and so we can conclude that����∥𝑤 −𝑤∗∥2
2
−

[
∥𝑤 ∥2

2
+

(
1 − 2

(1 + 𝜖)𝛾

)
∥𝑤∗∥2

2

] ���� ≤ 2∥𝑤∗∥2

√√√(
1 − 1

𝛾

) (
∥𝑤 ∥2

2
−

∥𝑤∗∥2
2

𝛾

)
− 𝜎2

𝛾
+ 3𝜖 ∥𝑤 ∥2

2
.

as desired. □

Theorem 7. Under the model assumptions in (1) with 𝛾 = 𝑑/𝑛 > 1 and Σ = 𝐼𝑑 , there exists 𝜖 ≲
(
log(40/𝛿)

𝑛

)
1/2

such that

with probability at least 1 − 𝛿 , it holds that

min

𝑤:𝑋𝑤=𝑌
∥𝑤 ∥2

2
≤ (1 + 𝜖)

(
∥𝑤∗∥2

2

𝛾
+ 𝜎2

𝛾 − 1

)
. (33)

Thus, by Theorem 6, we have

𝐿(𝑤̂) −
[(
1 − 1

𝛾

)
∥𝑤∗∥2

2
+ 𝜎2 𝛾

𝛾 − 1

]
≤ 𝜖

(
∥𝑤∗∥2

2

𝛾
+ 𝜎2

𝛾 − 1

)
+ ∥𝑤∗∥2

√√√
𝜖

(
∥𝑤∗∥2

2

𝛾
+ 𝜎2

𝛾 − 1

)
(34)

where 𝑤̂ is the minimal-ℓ2 norm interpolator. If we fix 𝜎2, 𝛾 and ∥𝑤∗∥2, then as 𝑛 → ∞

𝐿(𝑤̂) →
(
1 − 1

𝛾

)
∥𝑤∗∥2

2
+ 𝜎2 𝛾

𝛾 − 1

in probability. (35)

Proof. The proof strategy here follows the same lines as in Theorem 2 of Koehler et al. [21], but handles the 𝑤∗

term more carefully. First, we introduce the Lagrangian and apply a change of variable

min

𝑋𝑤=𝑌
∥𝑤 ∥2 = min

𝑤
max

𝜆
⟨𝜆,𝑋𝑤 − 𝑌 ⟩ + ∥𝑤 ∥2

= min

𝑤
max

𝜆
⟨𝜆,𝑋𝑤 − 𝜉⟩ + ∥𝑤 +𝑤∗∥2

To apply CGMT (Theorem 16), we need a double truncation argument. For any 𝑟, 𝑡 > 0, introduce the following problem:

Φ𝑟 (𝑡) = min

∥𝑤+𝑤∗ ∥2≤2𝑡
max

∥𝜆 ∥≤𝑟
⟨𝜆,𝑋𝑤 − 𝜉⟩ + ∥𝑤 +𝑤∗∥2 . (80)

We also introduce

Φ(𝑡) = min

∥𝑤+𝑤∗ ∥2≤2𝑡
max

𝜆
⟨𝜆,𝑋𝑤 − 𝜉⟩ + ∥𝑤 +𝑤∗∥2

= min

𝑋𝑤=𝜉

∥𝑤+𝑤∗ ∥2≤2𝑡

∥𝑤 +𝑤∗∥2 (81)

and claim that Φ𝑟 (𝑡) → Φ(𝑡) as 𝑟 → ∞. By definition, Φ𝑟 (𝑡) ≤ Φ𝑠 (𝑡) for 𝑟 ≤ 𝑠 . We consider two cases:

(1) Φ(𝑡) = ∞, i.e. theminimization problem definingΦ(𝑡) is infeasible. In this case, we know that for all ∥𝑤+𝑤∗∥2 ≤ 2𝑡

∥𝑋𝑤 − 𝜉 ∥2 > 0.

By compactness, there exists 𝜇 = 𝜇 (𝑋, 𝜉) > 0 (in particular, independent of 𝑟 ) such that

∥𝑋𝑤 − 𝜉 ∥2 ≥ 𝜇.

Therefore, considering 𝜆 along the direction of 𝑋𝑤 − 𝜉 shows that

Φ𝑟 (𝑡) = min

∥𝑤+𝑤∗ ∥2≤2𝑡
max

∥𝜆 ∥2≤𝑟
⟨𝜆,𝑋𝑤 − 𝜉⟩ + ∥𝑤 +𝑤∗∥2 ≥ 𝑟 𝜇
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so Φ𝑟 (𝑡) → ∞ as 𝑟 → ∞.

(2) Otherwise Φ(𝑡) < ∞, i.e. the minimization problem defining Φ(𝑡) is feasible. In this case, we can let𝑤 (𝑟 ) be an
arbitrary minimizer achieving the objective Φ𝑟 (𝑡) for each 𝑟 ≥ 0 by compactness. By compactness again, the

sequence {𝑤 (𝑟 )}∞
𝑟=1

at positive integer values of 𝑟 has a subsequential limit𝑤 (∞) such that ∥𝑤 (∞) +𝑤∗∥ ≤ 2𝑡 .

Equivalently, there exists an increasing sequence 𝑟𝑛 such that lim𝑛→∞𝑤 (𝑟𝑛) = 𝑤 (∞).
Suppose for the sake of contradiction that 𝑋𝑤 (∞) ≠ 𝜉 , then by continuity, there exists 𝜇 > 0 and a sufficiently

small 𝜖 > 0 such that for all ∥𝑤 −𝑤 (∞)∥2 ≤ 𝜖

∥𝑋𝑤 − 𝜉 ∥2 ≥ 𝜇.

This implies that for sufficiently large 𝑛, we have

∥𝑋𝑤 (𝑟𝑛) − 𝜉 ∥2 ≥ 𝜇

and by the same argument as in the previous case

Φ𝑟𝑛 (𝑡) = max

∥𝜆 ∥2≤𝑟
⟨𝜆,𝑋𝑤 (𝑟𝑛) − 𝜉⟩ + ∥𝑤 (𝑟𝑛) +𝑤∗∥2 ≥ 𝑟 𝜇

so Φ𝑟𝑛 → ∞, but this is impossible since Φ𝑟 (𝑡) ≤ Φ(𝑡) < ∞. By contradiction, it must be the case that𝑋𝑤 (∞) = 𝜉 .
By taking 𝜆 = 0 in the definition of Φ𝑟 (𝑡), we have

Φ𝑟𝑛 (𝑡) ≥ ∥𝑤 (𝑟𝑛) +𝑤∗∥2 .

By continuity, we show that

lim inf

𝑛→∞
Φ𝑟𝑛 (𝑡) ≥ lim

𝑛→∞
∥𝑤 (𝑟𝑛) +𝑤∗∥2 = ∥𝑤 (∞) +𝑤∗∥2 ≥ Φ(𝑡).

Since Φ𝑟𝑛 (𝑡) ≤ Φ(𝑡), the limit of Φ𝑟𝑛 (𝑡) exists and equals Φ(𝑡). We can conclude that lim𝑟→∞ Φ𝑟 (𝑡) = Φ(𝑡)
because Φ𝑟 (𝑡) is an increasing function of 𝑟 .

In both cases, we have Φ𝑟 (𝑡) → Φ(𝑡) as 𝑟 → ∞. The auxiliary problem corresponding to Φ𝑟 (𝑡) is

𝜙𝑟 (𝑡) = min

∥𝑤+𝑤∗ ∥2≤2𝑡
max

∥𝜆 ∥2≤𝑟
∥𝜆∥⟨𝐻,𝑤⟩ + ∥𝑤 ∥⟨𝐺, 𝜆⟩ − ⟨𝜆, 𝜉⟩ + ∥𝑤 +𝑤∗∥2 (82)

which is upper bounded by

𝜙 (𝑡) = min

∥𝑤+𝑤∗ ∥2≤2𝑡
max

𝜆
∥𝜆∥⟨𝐻,𝑤⟩ + ∥𝑤 ∥⟨𝐺, 𝜆⟩ − ⟨𝜆, 𝜉⟩ + ∥𝑤 +𝑤∗∥2

= min

⟨𝐻,𝑤 ⟩+∥𝐺 ∥𝑤 ∥−𝜉 ∥≤0
∥𝑤+𝑤∗ ∥2≤2𝑡

∥𝑤 +𝑤∗∥2 . (83)

Applying CGMT and the fact that Φ𝑟 (𝑡) monotonically increases to Φ(𝑡) almost surely, we can conclude

Pr

(
min

𝑋𝑤=𝑌
∥𝑤 ∥2 > 𝑡 | 𝜉

)
= Pr (Φ(𝑡) > 𝑡 | 𝜉) = Pr

(
lim

𝑟→∞
Φ𝑟 (𝑡) > 𝑡 | 𝜉

)
≤ lim

𝑟→∞
Pr (Φ𝑟 (𝑡) > 𝑡 | 𝜉)

≤ 2 · lim

𝑟→∞
Pr (𝜙𝑟 (𝑡) > 𝑡 | 𝜉)

≤ 2 · Pr (𝜙 (𝑡) > 𝑡 | 𝜉) = 2 · Pr
(

min

⟨𝐻,𝑤 ⟩+∥𝐺 ∥𝑤 ∥−𝜉 ∥≤0
∥𝑤 +𝑤∗∥2 > 𝑡 | 𝜉

)
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By tower law, we have shown that

Pr

(
min

𝑋𝑤=𝑌
∥𝑤 ∥2 > 𝑡

)
≤ 2 · Pr

(
min

∥𝐺 ∥𝑤 ∥−𝜉 ∥≤⟨𝐻,𝑤 ⟩
∥𝑤 +𝑤∗∥2 > 𝑡

)
.

To upper bound the minimum, we consider 𝑤 of the form 𝛼𝑤∗ + 𝛽𝑃𝐻 where 𝑃 = 𝐼 − 𝑤∗ (𝑤∗)𝑇
∥𝑤∗ ∥2 . For the simplicity of

notation, define

𝜖 = 2

√
log(40/𝛿)

𝑛
and 𝜌 =

√
1

𝑛
+ 2

√
log(20/𝛿)

𝑛
.

By a union bound, the following collection of events occurs with probability at least 1 − 𝛿/2:

(1) By Lemma 3, it holds that

|⟨𝜉,𝐺⟩| ≤ 𝜌 ∥𝜉 ∥ · ∥𝐺 ∥

(2) By Lemma 2, it holds that

(1 − 𝜖)𝜎
√
𝑛 ≤ ∥𝜉 ∥ ≤ (1 + 𝜖)𝜎

√
𝑛

(1 − 𝜖)
√
𝑛 ≤ ∥𝐺 ∥ ≤ (1 + 𝜖)

√
𝑛(√

𝑑 − 1

𝑛
− 𝜖

)
√
𝑛 ≤ ∥𝑃𝐻 ∥ ≤

(√
𝑑 − 1

𝑛
+ 𝜖

)
√
𝑛

(3) By standard Gaussian tail bound, it holds that

|⟨𝐻,𝑤∗⟩| ≤ ∥𝑤∗∥𝜖
√
𝑛

The above bounds imply that

∥𝐺 ∥𝑤 ∥ − 𝜉 ∥2 = ∥𝐺 ∥2∥𝑤 ∥2 + ∥𝜉 ∥2 − 2∥𝑤 ∥⟨𝐺, 𝜉⟩

≤ (1 + 𝜌) (∥𝐺 ∥2∥𝑤 ∥2 + ∥𝜉 ∥2)

≤ (1 + 𝜌) (1 + 𝜖)2𝑛(∥𝑤 ∥2 + 𝜎2) .

By orthogonality, observe that

∥𝑤 ∥2 = 𝛼2∥𝑤∗∥2 + 𝛽2∥𝑃𝐻 ∥2

⟨𝐻,𝑤⟩ = 𝛼 ⟨𝐻,𝑤∗⟩ + 𝛽 ∥𝑃𝐻 ∥2,

and so to ensure that ∥𝐺 ∥𝑤 ∥ − 𝜉 ∥ ≤ ⟨𝐻,𝑤⟩, we can choose 𝛽 such that

(1 + 𝜌)1/2 (1 + 𝜖)
√
𝑛(𝛼2∥𝑤∗∥2 + 𝛽2∥𝑃𝐻 ∥2 + 𝜎2) + 𝛼 ∥𝑤∗∥𝜖

√
𝑛 ≤ 𝛽 ∥𝑃𝐻 ∥2 .

Note that it suffices to have

(1 + 𝜌)1/2 (1 + 2𝜖)
√
𝑛(𝛼2∥𝑤∗∥2 + 𝛽2∥𝑃𝐻 ∥2 + 𝜎2) ≤ 𝛽 ∥𝑃𝐻 ∥2

⇐⇒ 𝛼2
∥𝑤∗∥2

(1 + 𝜌)−1 (1 + 2𝜖)−2 ∥𝑃𝐻 ∥2
𝑛 − 1

+ 𝜎2

(1 + 𝜌)−1 (1 + 2𝜖)−2 ∥𝑃𝐻 ∥2
𝑛 − 1

≤ 𝛽2∥𝑃𝐻 ∥2

Again, by orthogonality, we have

∥𝑤 +𝑤∗∥2 = (1 + 𝛼)2∥𝑤∗∥2 + 𝛽2∥𝑃𝐻 ∥2
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and so

min

∥𝐺 ∥𝑤 ∥−𝜉 ∥≤⟨𝐻,𝑤 ⟩
∥𝑤 +𝑤∗∥2

≤ 𝜎2

(1 + 𝜌)−1 (1 + 2𝜖)−2 ∥𝑃𝐻 ∥2
𝑛 − 1

+min

𝛼
(1 + 𝛼)2∥𝑤∗∥2 + 𝛼2 ∥𝑤∗∥2

(1 + 𝜌)−1 (1 + 2𝜖)−2 ∥𝑃𝐻 ∥2
𝑛 − 1

=
𝜎2

(1 + 𝜌)−1 (1 + 2𝜖)−2 ∥𝑃𝐻 ∥2
𝑛 − 1

+ ∥𝑤∗∥2

(1 + 𝜌)−1 (1 + 2𝜖)−2 ∥𝑃𝐻 ∥2
𝑛

Finally, we can plug in the high probability lower bound for ∥𝑃𝐻 ∥
√
𝑛 and the proof is complete after some routine

calculations. □

C.5 LASSO with Isotropic Covariance

Theorem 8. Using the notation of Theorem 5, we have with probability at least 1− 𝛿 that for all𝑤 with ∥𝑤 ∥1 ≤ ∥𝑤∗∥1,������√𝐿(𝑤) − 𝜎2 −

√
𝛾𝐿̂(𝑤)
(1 − 𝛾)2

������ ≤ 𝜖
√
𝐿̂(𝑤) +

√
1

1 − 𝛾

(
𝐿̂(𝑤)
1 − 𝛾 − 𝜎2

)
+ 𝜖𝐿̂(𝑤) (36)

provided 𝛾 + 2𝜖/
√
𝑛 < 1, where

K ′
:= {𝑢 : ∃𝛿 > 0, ∥𝑤∗ + 𝛿𝑢∥1 ≤ ∥𝑤∗∥1} and 𝛾 :=

1

𝑛
·𝑊 (K ′ ∩ 𝑆𝑛−1)2 .

Proof. We use that for K ′
:= {𝑢 : ∃𝛿 > 0, ∥𝑤∗ + 𝛿𝑢∥1 ≤ ∥𝑤∗∥1}

⟨𝑤∗ −𝑤, 𝑥⟩ ≤ ∥𝑤∗ −𝑤 ∥ sup

𝑢∈K′∩𝑆𝑛−1
⟨𝑢, 𝑥⟩

where 𝑆𝑛−1 is the unit sphere. Recall that 𝜔 :=𝑊 (K ′ ∩ 𝑆𝑛−1) denotes the Gaussian width of the intersection of the

tangent cone K ′
with the unit sphere. Let 𝜖 = Θ

(
log(36/𝛿)

𝑛

)
1/2

as in Theorem 5, then with this notation Theorem 1

gives

𝜎2 + ∥𝑤∗ −𝑤 ∥2
2
≤ (1 + 𝛽)

(√
𝐿̂(𝑤) + ∥𝑤∗ −𝑤 ∥2 (𝜔 + 2𝜖)/

√
𝑛

)
2

≤ (1 + 14𝜖)
(√
𝐿̂(𝑤) + ∥𝑤∗ −𝑤 ∥2 (𝜔 + 2𝜖)/

√
𝑛

)
2

.

This is a quadratic equation in ∥𝑤∗ −𝑤 ∥2 which is of exactly the same form as the quadratic equation that arose in the

analysis of Ordinary Least Squares (proof of Theorem 5), if we define 𝛾 = 𝜔2/𝑛. So solving the quadratic equation in

the exact same way, we find that under the assumption 𝛾 + 2𝜖/
√
𝑛 < 1 that������√𝐿(𝑤) − 𝜎2 −

√
𝛾𝐿̂(𝑤)
(1 − 𝛾)2

������ ≤ 𝜖
√
𝐿̂(𝑤) +

√
1

1 − 𝛾

(
𝐿̂(𝑤)
1 − 𝛾 − 𝜎2

)
+ 𝜖𝐿̂(𝑤) . (84)

□

D PROOFS FOR SECTION 5

We start with the following result, which lets us upper bound the training error of the ERM in a convex set K and is

proved using a direct application of the Convex Gaussian Minmax Theorem.
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Theorem 9. Suppose that K is a convex set and consider the upper summary function𝜓+
𝛿
as defined in (38). It holds

with probability at least 1 − 𝛿 ,

min

𝑤∈K

√
𝐿̂(𝑤) ≤ min

𝑟 ≥0
𝜓+
𝛿
(𝑟 ) (40)

Proof. Observe that

min

𝑤∈K

√
𝐿̂(𝑤) = 1

√
𝑛

min

𝑤∈K
max

∥𝜆 ∥2≤1
⟨𝜉 + 𝑍Σ1/2 (𝑤∗ −𝑤), 𝜆⟩ (85)

which is a minimax optimization problem over a convex-conave function on a convex set. Hence by the Convex Gaussian

Minmax Theorem (Theorem 16) and the same kind of truncation argument based on Lemma 5, to get a probability at

least 1 − 𝛿 upper bound on the Primary Optimization (85), it suffices to prove a probability at least 1 − 𝛿/2 upper bound
on the following auxillary problem:

1

√
𝑛

min

𝑤∈K
max

∥𝜆 ∥2≤1
⟨𝜉, 𝜆⟩ + ∥𝜆∥2⟨𝐻, Σ1/2 (𝑤∗ −𝑤)⟩ + ∥𝑤∗ −𝑤 ∥Σ⟨𝐺, 𝜆⟩

=
1

√
𝑛

min

𝑤∈K
max

∥𝜆 ∥2≤1
⟨𝜉 + ∥𝑤∗ −𝑤 ∥Σ𝐺, 𝜆⟩ + ∥𝜆∥2⟨𝐻, Σ1/2 (𝑤∗ −𝑤)⟩

=
1

√
𝑛

min

𝑤∈K
max

{
∥𝜉 + ∥𝑤∗ −𝑤 ∥Σ𝐺 ∥2 + ⟨𝐻, Σ1/2 (𝑤∗ −𝑤)⟩, 0

}
≤ 1

√
𝑛

min

𝑤∈K
max

{
(1 + 𝛽1)

√
𝜎2𝑛 + ∥𝑤∗ −𝑤 ∥2Σ𝑛 − ⟨𝐻, Σ1/2 (𝑤 −𝑤∗)⟩, 0

}
where in the last equality, we used that the maximum is attained along the direction 𝜉 + ∥𝑤∗ −𝑤 ∥Σ𝐺 and is attained

either at ∥𝜆∥ = 0 or ∥𝜆∥ = 1. Also, consider two cases: either there exists𝑤 ∈ K such that the non-zero quantity inside

the max is negative, in which case the minimum is just zero, or for all𝑤 ∈ K , this quantity is positive and so we can

drop the max inside the minimum. In either case, we see that this is not larger than

max

{
0, min

𝑤∈K
(1 + 𝛽1)

√
𝜎2 + ∥𝑤∗ −𝑤 ∥2Σ − 1

√
𝑛
⟨𝐻, Σ1/2 (𝑤 −𝑤∗)⟩

}
.

For any particular 𝑟 ≥ 0, we can control it by restricting to K𝑟

min

𝑤∈K
(1 + 𝛽1)

√
𝜎2 + ∥𝑤∗ −𝑤 ∥2Σ − 1

√
𝑛
⟨𝐻, Σ1/2 (𝑤 −𝑤∗)⟩

≤ min

𝑤∈K𝑟

(1 + 𝛽1)
√
𝜎2 + 𝑟2 − 1

√
𝑛
⟨𝐻, Σ1/2 (𝑤 −𝑤∗)⟩

=(1 + 𝛽1)
√
𝜎2 + 𝑟2 − 1

√
𝑛

sup

∥𝑤∗−𝑤 ∥Σ≤𝑟
⟨𝐻, Σ1/2 (𝑤 −𝑤∗)⟩

and so by Gaussian concentration (Theorem 15)

min

𝑤∈K

√
𝐿̂(𝑤) ≤ max

{
0, (1 + 𝛽1)

√
𝜎2 + 𝑟2 −𝑊Σ (K𝑟 )/

√
𝑛 +𝑂 (𝑟

√
log(2/𝛿)/𝑛))

}
.

In particular, we can choose the 𝑟 that minimizes the right hand side, which concludes the proof. □

Lemma 12. For any 𝜎 ≥ 0, the function 𝑟 ↦→
√
𝜎2 + 𝑟2 is strictly increasing, convex, and 1-Lipschitz on R≥0, and also

strictly convex if 𝜎 > 0.

Proof. Let 𝑓 (𝑟 ) :=
√
𝜎2 + 𝑟2, then

𝑓 ′(𝑟 ) = 𝑟
√
𝜎2 + 𝑟2

∈ (0, 1]
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and

𝑓 ′′(𝑟 ) = 1

√
𝜎2 + 𝑟2

− 𝑟2

(𝜎2 + 𝑟2)3/2
=

𝜎2

(𝜎2 + 𝑟2)3/2

which is nonnegative, and positive if 𝜎 > 0. □

Lemma 13. If K is a convex set in R𝑑 and

K𝑟 := K ∩ {𝑤 : ∥𝑤 −𝑤∗∥Σ ≤ 𝑟 }

then for any 𝑥 ∈ R𝑑 , the function
𝑔(𝑟 ) := sup

𝑤∈K𝑟

⟨𝑥,𝑤 −𝑤∗⟩

is increasing and concave. In particular, the function 𝜔 (𝑟 ) :=𝑊Σ (K𝑟 ) is increasing and concave.

Proof. Without loss of generality wemay assume the setK is closed, since replacingK by its closure does not change

the value of𝑔(𝑟 ). The fact that it is increasing is obvious from the definition. Let 𝑟 = (1−𝜆)𝑠+𝜆𝑡 and let𝑤𝑠 ∈ K𝑠 ,𝑤𝑡 ∈ K𝑡 .

Then𝑤𝑟 := (1−𝜆)𝑤𝑠 +𝜆𝑤𝑡 lies inK𝑟 by convexity ofK , and because ∥𝑤𝑟 −𝑤∗∥Σ ≤ (1−𝜆)∥𝑤𝑠 −𝑤∗∥Σ +𝜆∥𝑤𝑡 −𝑤∗∥Σ
by the triangle inequality. Since

⟨𝑤𝑟 −𝑤∗, 𝑥⟩ = (1 − 𝜆)⟨𝑤𝑠 −𝑤∗, 𝑥⟩ + 𝜆⟨𝑤𝑡 −𝑤∗, 𝑥⟩

and𝑤𝑠 ,𝑤𝑡 were arbitrary vectors in K𝑠 ,K𝑡 , taking the maximum over𝑤𝑠 ,𝑤𝑡 shows

max

𝑤∈K𝑟

⟨𝑤 −𝑤∗, 𝑥⟩ ≥ (1 − 𝜆)𝑔(𝑠) + 𝜆𝑔(𝑡) . □

We now give the main arguments used in the proof of Theorem 10. The following lemma shows how to derive lower

bounds on the generalization error of the constrained Empirical Risk Minimizer, by formalizing the informal argument

from Section 5. To avoid having to perform a union bound over all localization radiuses 𝑟 , we show how to get the

conclusion by applying Theorem 1 for a few carefully chosen values of setsK𝑟 ; this is equivalent to applying Theorem 1

once with a simplified version of the “optimal complexity functional” described before.

Lemma 14. Suppose that K is a convex set and we are under the model assumptions (1) and recall summary functionals

𝜓+
𝛿
,𝜓−

𝛿
as defined in (38) and (39). Let 𝛿 > 0 be arbitrary, let 𝜇∗ := min𝑟 ≥0𝜓+

𝛿
(𝑟 ), and suppose that 𝑟− ≥ 0, 𝜇 > 𝜇∗ and

𝜂 > 0 are such that we have 𝜂𝐾 ≤ 𝛿 for 𝐾 :=

⌈
𝑟−

𝜇−𝜇∗
⌉
and for all 𝑟 ∈ [0, 𝑟−]

min

𝑟 ∈[0,𝑟− ]
𝜓−
𝜂 (𝑟 ) > 𝜇.

Then with probability at least 1 − 2𝛿 , the constrained empirical risk minimizer 𝑤̂ = argmin𝑤∈K 𝐿̂(𝑤) satisfies

∥𝑤̂ −𝑤∗∥Σ > 𝑟− .

Proof. Observe that for any fixed value of 𝑟 ≤ 𝑟−, it follows from Theorem 1 that with probability at least 1 − 𝜂 for

all𝑤 ∈ K𝑟 where 𝜂 = 𝛿 + 𝜏/𝑟√
𝐿̂(𝑤) > (1 − 𝛽1)

√
𝜎2 + ∥𝑤 −𝑤∗∥2 −𝑊Σ (K𝑟 )/

√
𝑛 −𝐶𝑟

√
log(2/𝜂)/𝑛 (86)

≥ 𝜓−
𝜂 (𝑟 ) − (1 − 𝛽1) (𝑟 − ∥𝑤 −𝑤∗∥Σ) (87)

≥ 𝜇 − (1 − 𝛽1) (𝑟 − ∥𝑤 −𝑤∗∥Σ) (88)
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where we used the Lipschitz property from Lemma 12. We apply this argument for a grid on [0, 𝑟−] which includes the

right end point 𝑟− with spacing 𝜇 − 𝜇∗ < (𝜇 − 𝜇∗)/(1 − 𝛽1), i.e. with ⌈ 𝑟−
𝜇−𝜇∗ ⌉ ≤ 𝐾 many grid points and apply the union

bound, it follows that with probability at least 1 − 𝜂𝐾 ≥ 1 − 𝛿 that for all𝑤 with ∥𝑤 −𝑤∗∥Σ ≤ 𝑟− that√
𝐿̂(𝑤) > 𝜇∗ .

Recall from Theorem 9 that with probability at least 1−𝛿 the constrained ERM satisfies

√
𝐿̂(𝑤̂) ≤ 𝜇∗. Thus, by applying

the union bound we show that ∥𝑤 ′ −𝑤∗∥Σ > 𝑟− with probability at least 1 − 2𝛿 . □

Theorem 10. Suppose thatK is a convex set and consider the summary functional𝜓+
𝛿
,𝜓−

𝛿
as defined in (38) and (39). Let

𝛿 > 0 and 𝜇 be arbitrary such that 𝜇 > 𝜇∗ := min𝑟 ≥0𝜓+
𝛿
(𝑟 ) and define 𝑟∗ := inf{𝑟 : 𝜓+

𝛿
(𝑟 ) = 𝜇∗}. Then with probability at

least 1 − 4𝛿 , it holds that uniformly over all𝑤 ∈ K such that
√
𝐿̂(𝑤) ≤ 𝜇 that:

∥𝑤 −𝑤∗∥Σ ≤ 𝑟+ := sup{𝑟 ≥ 0 : 𝜓−
𝛿
(𝑟 ) ≤ 𝜇} (41)

and also

∥𝑤 −𝑤∗∥Σ ≥ 𝑟− := inf

{
𝑟 ≥ 0 : 𝜓−

𝜏 (𝑟 ) ≤ 𝜇
}

(42)

where 𝜏 := 𝛿
/
⌈ 𝜇−𝜇

∗

𝑟 ∗ ⌉.

Proof. We first show the upper bound ∥𝑤 −𝑤∗∥Σ ≤ 𝑟+ for all𝑤 ∈ K with

√
𝐿̂(𝑤) ≤ 𝜇. If 𝑟+ = ∞, then the upper

bound is trivial. Otherwise, we have

𝜓−
𝛿
(𝑟+) = 𝜇 (89)

by continuity. Observe that the conclusion of Theorem 1 can be written as

(1 + 𝛽)−1/2
√
𝐿(𝑤) − 𝐹 (𝑤)

√
𝑛

≤
√
𝐿̂(𝑤) (90)

so taking 𝐹 (𝑤) = 𝑊 (K𝑟+ ) + 𝐶𝑟+
√
log(2/𝛿)/𝑛 for 𝑤 ∈ K𝑟+ and ∞ outside, applying Theorem 1, and recalling the

definition of𝜓−
𝛿
from (39) and using (89) gives

min

𝑤∈K, ∥𝑤−𝑤∗ ∥Σ=𝑟+

√
𝐿̂(𝑤) ≥ 𝜓−

𝛿
(𝑟+) = 𝜇 (91)

Also, by definition if 𝑟 ≥ 𝑟+, then𝜓+
𝛿
(𝑟 ) > 𝜓−

𝛿
(𝑟 ) ≥ 𝜇 > 𝜇∗ and so 𝑟 cannot be the minimizer of𝜓+

𝛿
, i.e. we have shown

𝑟∗ < 𝑟+, where 𝑟∗ is the minimizer of𝜓+
𝛿
so

𝜇∗ = 𝜓+
𝛿
(𝑟∗) = min

𝑟 ≥0
𝜓+
𝛿
(𝑟 ).

Note that since the minimizer 𝑟∗ < 𝑟+, by applying Theorem 9 we have with probability at least 1 − 𝛿 that

min

𝑤∈K, ∥𝑤−𝑤∗ ∥Σ<𝑟+

√
𝐿̂(𝑤) ≤ 𝜓+

𝛿
(𝑟∗) = 𝜇∗ < 𝜇. (92)

This establishes the claim ∥𝑤 − 𝑤∗∥Σ ≤ 𝑟 by convexity: suppose for contradiction there exists 𝑤 ∈ K such that

∥𝑤 − 𝑤∗∥Σ > 𝑟+ and

√
𝐿̂(𝑤) ≤ 𝜇. By (92), there exists 𝑤 ′ ∈ K with ∥𝑤 ′ − 𝑤∗∥Σ < 𝑟+ and

√
𝐿̂(𝑤) < 𝜇. Therefore,

by convexity we conclude that there exists 𝑤 ′′
which is a convex combination of 𝑤,𝑤 ′

such that

√
𝐿̂(𝑤 ′′) < 𝜇 and

∥𝑤 −𝑤∗∥Σ = 𝑟+, but this contradicts (91).
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Now we show that ∥𝑤 −𝑤∗∥Σ ≥ 𝑟− for all𝑤 ∈ K with

√
𝐿̂(𝑤) ≤ 𝜇. If 𝑟− = −∞ then the bound is trivial. Otherwise,

by continuity

𝜓−
𝜏/𝑟 ∗ (𝑟−) = 𝜇

and by definition for all 𝑟 < 𝑟∗ we have𝜓−
𝜏/𝑟 ∗ (𝑟−) ≥ 𝜇. Also, since𝜓−

𝜏/𝑟 ∗ (𝑟
∗) ≤ 𝜓+

𝛿
(𝑟∗) = 𝜇∗ < 𝜇 from the definition, we

know that 𝑟∗ > 𝑟−, hence 𝜏/𝑟− > 𝜏/𝑟∗ and so

min

𝑟 ∈[0,𝑟− ]
𝜓−
𝜏/𝑟− (𝑟 ) ≥ min

𝑟 ∈[0,𝑟− ]
𝜓−
𝜏/𝑟 ∗ (𝑟 ) = 𝜇.

Therefore, we can apply Lemma 14 to conclude that with probability at least 1 − 𝛿 , the constrained ERM 𝑤̂ =

argmin𝑤∈K 𝐿̂(𝑤) satisfies
∥𝑤̂ −𝑤∗∥Σ > 𝑟− .

By applying Theorem 1 analogously to the 𝑟+ case, we know that with probability at least 1 − 𝜏 ≥ 1 − 𝛿 ,

min

∥𝑤−𝑤∗ ∥Σ=𝑟−,𝑤∈K

√
𝐿̂(𝑤̂) > 𝜇 (93)

and since 𝜇∗ < 𝜇, it follows by a convexity argument that for all𝑤 with ∥𝑤 −𝑤∗∥Σ ≤ 𝑟−,√
𝐿̂(𝑤) > 𝜇 (94)

which establishes the desired conclusion as the contrapositive. The convexity argument is symmetrical to the 𝑟+ case: if

(94) is false for some𝑤 , then interpolating between𝑤 and 𝑤̂ and observes that there exists a convex combination𝑤 ′′

such that

√
𝐿̂(𝑤) ≤ 𝜇 and ∥𝑤 ′′ −𝑤∗∥Σ = 𝑟−, which contradicts (93). □
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E PROOFS FOR SECTION 6

E.1 Faster Rates for Low-Complexity Classes

Lemma 15. Under the assumptions of Theorem 1 and with the definition of 𝛽1 there, with probability at least 1− 4(𝛿 + 𝛿 ′)

𝐿(𝑤̂) ≤ 𝜎2 + (1 + 2𝛽1)
(√
𝜎𝐹 (𝑤̂)/

√
𝑛 + 𝐹 (𝑤̂)/

√
𝑛

)
2

where 𝑤̂ is any empirical risk minimizer over a closed convex set K containing𝑤∗, i.e. 𝐿̂(𝑤̂) = min𝑤∈K 𝐿̂(𝑤).

Proof. Write 𝑋 = 𝑍Σ1/2 with 𝑍 a matrix of i.i.d. Gaussians, and observe

1

𝑛
⟨𝑍𝑇 𝜉, Σ1/2 (𝑤 −𝑤∗)⟩ = 1

𝑛
⟨𝜉, 𝑍Σ1/2 (𝑤 −𝑤∗)⟩ = 1

𝑛
⟨𝜉, 𝑋 (𝑤 −𝑤∗)⟩

Note that conditional on 𝜉 , 𝑍𝑇 𝜉 is just a standard Gaussian 𝑁 (0, ∥𝜉 ∥2
2
𝐼𝑑 ). So with probability at least 1 − 𝛿 ′ (recalling

the defining property of the complexity functional 𝐹 ) we have

1

𝑛
⟨𝑍𝑇 𝜉, Σ1/2 (𝑤 −𝑤∗)⟩ ≤ ∥𝜉 ∥2

𝑛
𝐹 (𝑤). (95)

Observe that

∇𝑤 𝐿̂(𝑤) = 1

𝑛
∇𝑤 ∥𝑌 − 𝑋𝑤 ∥2

2
= − 2

𝑛
𝑋𝑇 (𝑌 − 𝑋𝑤) = − 2

𝑛
(𝑋𝑇 𝜉 + 𝑋𝑇𝑋 (𝑤∗ −𝑤))

so from the KKT condition ⟨𝑤∗ − 𝑤̂,∇𝑤 𝐿̂(𝑤̂)⟩ ≥ 0 we have

⟨𝑤∗ − 𝑤̂, 𝑋𝑇 𝜉⟩ + ⟨𝑤∗ −𝑤,𝑋𝑇𝑋 (𝑤∗ −𝑤)⟩ ≤ 0

so rearranging gives the first inequality, and using (95) gives the second inequality in

∥𝑤∗ − 𝑤̂ ∥Σ̂ ≤
√

1

𝑛
⟨𝜉, 𝑋 (𝑤̂ −𝑤∗)⟩ ≤

√
∥𝜉 ∥2
𝑛

𝐹 (𝑤) .

By Theorem 1 (defining 𝐹 (𝑤) = ∞ outside of K), for all𝑤 ∈ K

∥𝑤∗ −𝑤 ∥Σ ≤ (1 + 𝛽1)
[
∥𝑤∗ −𝑤 ∥Σ̂ + 𝐹 (𝑤)/

√
𝑛
]

and so for 𝑤̂ we have

∥𝑤∗ − 𝑤̂ ∥Σ ≤ (1 + 𝛽1)
[
∥𝑤∗ − 𝑤̂ ∥Σ̂ + 𝐹 (𝑤̂)/

√
𝑛
]

≤ (1 + 𝛽1)
[√

∥𝜉 ∥2
𝑛

𝐹 (𝑤̂) + 𝐹 (𝑤̂)/
√
𝑛

]
and using the fact that the norm ∥𝜉 ∥2 concentrates about 𝜎

√
𝑛 by Lemma 2 and recalling the definition of 𝛽1, we have

∥𝑤∗ − 𝑤̂ ∥2Σ ≤ (1 + 2𝛽1)
(√
𝜎𝐹 (𝑤̂)/

√
𝑛 + 𝐹 (𝑤̂)/

√
𝑛

)
2

.

Finally, recalling that 𝐿(𝑤̂) = 𝜎2 + ∥𝑤 − 𝑤̂ ∥2Σ gives the bound as claimed. □

Theorem 11. LetK be a closed convex set in R𝑑 containing𝑤∗ and suppose 𝛿 ′ ≥ 0, 𝑝 ≥ 0 are such that with probability

at least 1 − 𝛿 ′ over the randomness of 𝑥 ∼ 𝑁 (0, Σ), uniformly over all𝑤 ∈ K we have

⟨𝑤 −𝑤∗, 𝑥⟩ ≤ ∥𝑤 −𝑤∗∥Σ
√
𝑝. (43)
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Suppose that 𝑤̂ = argmin𝑤∈K 𝐿̂(𝑤) and 𝑝/𝑛 ≤ 0.999, then for all 𝑛 ≥ 𝐶 log(2/𝛿) for some absolute constant 𝐶 > 0, it

holds with probability at least 1 − (𝛿 + 𝛿 ′) that

𝐿(𝑤̂) − 𝜎2 ≤ (1 + 𝜏)𝜎2 · 𝑝
𝑛
. (44)

where 𝜏 = 𝜏 (𝑝, 𝑛, 𝛿) is upper bounded by an absolute constant and satisfies 𝜏 (𝑝, 𝑛, 𝛿) → 1 in any joint limit [𝑝 +
log(2/𝛿)]/𝑛 → 0, 𝑛 → ∞.

Proof. Defining 𝜌 :=
√
𝑝/𝑛 and Lemma 15 gives

∥𝑤∗ − 𝑤̂ ∥Σ ≤ (1 + 2𝛽1)1/2
(√
𝜎𝐹 (𝑤̂)/

√
𝑛 + 𝐹 (𝑤̂)/

√
𝑛

)
= (1 + 2𝛽1)1/2

(√
𝜎𝜌 ∥𝑤 −𝑤∗∥Σ + 𝜌 ∥𝑤 −𝑤∗∥Σ

)
hence

(1 − (1 + 2𝛽1)1/2𝜌)∥𝑤 −𝑤∗∥Σ ≤ (1 + 2𝛽1)1/2
√
𝜎𝜌 ∥𝑤 −𝑤∗∥Σ

which is equivalent to

∥𝑤 −𝑤∗∥Σ ≤ (1 + 2𝛽1)𝜎𝜌
(1 − (1 + 2𝛽1)1/2𝜌)2

and this in turn is equivalent to the final result. □

Corollary 4. Under the model assumptions (1) with 𝑑 < 𝑛 and assuming a sufficiently large 𝑛, it holds with probability at

least 1 − 𝛿 that

𝐿(𝑤̂OLS) − 𝜎2 ≲ 𝜎2
(√

𝑑

𝑛
+ 2

√
log(36/𝛿)

𝑛

)
2

(45)

Proof. Recall from the proof of Theorem 5 that with probability at least 1 − 𝛿 ′ we have

⟨𝑤 −𝑤∗, 𝑥⟩ ≤
(√
𝑑 + 2

√
log(4/𝛿 ′)

)
∥Σ1/2 (𝑤∗ −𝑤)∥2

where 𝛿 ′ = 𝛿/9 so the result follows from Theorem 11 with K = R𝑑 . □

Corollary 5. Applying Theorem 11 with K = {∥𝑤 ∥1 ≤ ∥𝑤∗∥1} the rescaled ℓ1-ball and under the sparsity and compata-

bility condition assumptions of Theorem 4, we have with probability at least 1 − 𝛿 that the LASSO solution

𝑤̂𝐿𝐴𝑆𝑆𝑂 = argmin

𝑤:∥𝑤 ∥1≤∥𝑤∗ ∥1
𝐿̂(𝑤)

satisfies

𝐿(𝑤̂𝐿𝐴𝑆𝑆𝑂 ) − 𝜎2 ≲
max𝑖 Σ𝑖𝑖
𝜙 (Σ, 𝑆)2

· 𝜎
2𝑘 log(16𝑑/𝛿)

𝑛
(46)

provided 𝑛 is sufficiently large that √
max𝑖 Σ𝑖𝑖
𝜙 (Σ, 𝑆)2

· 8𝑘 log(16𝑑/𝛿)
𝑛

≤ 0.999.

Proof. Recall from the proof of Theorem 4, more specially (76), that with probability at least 1 − 𝛿/8

⟨𝑤 −𝑤∗, 𝑥⟩ ≤ ∥𝑤 −𝑤∗∥1∥𝑥 ∥∞ ≤ 2∥(𝑤 −𝑤∗)𝑆 ∥1∥𝑥 ∥∞ ≤ 2𝑘1/2

𝜙 (Σ, 𝑆) ∥𝑤 −𝑤∗∥Σ max

𝑖

√
2Σ𝑖𝑖 log(16𝑑/𝛿) .

so the result follows from Theorem 11. □
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E.2 Precise Rates for OLS

Theorem 12. Under the model assumptions in (1), fix 𝛾 = 𝑑/𝑛 to be some value in (0, 1) and pick any 𝑐 > 0. Then there

exists another absolute constant 𝑐 ′ > 0 such that for all sufficiently large 𝑛, with probability at least 1 − 𝛿 , there exists a
𝑤 ∈ R𝑑 such that

𝐿̂(𝑤) − 𝐿̂(𝑤̂OLS) ≤ 𝑐 ·
𝜎2

𝑛1/2
, (47)

but the population error satisfies

𝐿(𝑤) − 𝐿(𝑤̂OLS) ≥ 𝑐 ′ ·
𝜎2

𝑛1/4
. (48)

Proof. Consider the following estimator:

𝑤𝛼 = 𝑤∗ + 𝛼
(
𝑤̂OLS −𝑤∗)

= 𝑤∗ + 𝛼 (𝑋𝑇𝑋 )−1𝑋𝑇 𝜉

Then the training error is

𝐿̂(𝑤𝛼 ) =
1

𝑛
∥𝑌 − 𝑋𝑤𝛼 ∥2

=
1

𝑛
∥𝜉 − 𝛼𝑋 (𝑋𝑇𝑋 )−1𝑋𝑇 𝜉 ∥2

=
1

𝑛
∥
(
𝐼 − 𝑋 (𝑋𝑇𝑋 )−1𝑋𝑇

)
𝜉 + (1 − 𝛼)𝑋 (𝑋𝑇𝑋 )−1𝑋𝑇 𝜉 ∥2

=
1

𝑛
∥
(
𝐼 − 𝑋 (𝑋𝑇𝑋 )−1𝑋𝑇

)
𝜉 ∥2 + (1 − 𝛼)2 1

𝑛
∥𝑋 (𝑋𝑇𝑋 )−1𝑋𝑇 𝜉 ∥2

= 𝐿̂(𝑤̂OLS) + (1 − 𝛼)2


𝑤̂OLS −𝑤∗

2

Σ̂

By Lemma 9, with probability at least 1 − 𝛿 , it holds that

𝑤̂OLS −𝑤∗

2
Σ̂ ≤ 𝜎2

(
√
𝛾 + 2

√
log(4/𝛿)

𝑛

)
2

which can again be upper bounded by, for example, 4𝜎2𝛾 for a sufficiently large n. Therefore, we can let

(1 − 𝛼)24𝜎2𝛾 = 𝑐 · 𝜎
2

√
𝑛

and it suffices to pick

𝛼 = 1 +
√

𝑐

4𝛾
· 1

𝑛1/4
.

So if we define 𝑐 ′ = 2

√
𝑐
4𝛾 , then the excess error of𝑤𝛼 satisfies

𝐿(𝑤𝛼 ) − 𝜎2 = ∥Σ1/2 (𝑤𝛼 −𝑤∗)∥2

= 𝛼2∥Σ1/2 (𝑤̂OLS −𝑤∗)∥2

≥
(
1 + 𝑐 ′

𝑛1/4

)
· 𝐿(𝑤̂OLS) .

The last inequality follows from the fact that 𝐿(𝑤̂OLS) ≥ 𝜎2. □
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Theorem 13. Under the model assumptions in (1) with 𝑑 ≤ 𝑛, consider the ordinary least square estimator 𝑤̂OLS =

(𝑋𝑇𝑋 )−1𝑋𝑇𝑌 . It holds that

E𝐿(𝑤̂OLS) = 𝜎2
𝑛 − 1

𝑛 − 𝑑 − 1

Var(𝐿(𝑤̂OLS)) = 2𝜎4
𝑑 (𝑛 − 1)

(𝑛 − 𝑑 − 1)2 (𝑛 − 𝑑 − 3)

(49)

Hence as 𝑑/𝑛 → 𝛾 , it holds that

E𝐿(𝑤̂OLS) →
𝜎2

1 − 𝛾 and
𝑛

𝜎4
Var(𝐿(𝑤̂OLS)) →

2𝛾

(1 − 𝛾)3
. (50)

If 𝑑 is held constant, as 𝑛 → ∞, we have

𝑛 E[𝐿(𝑤̂OLS) − 𝜎2] → 𝜎2𝑑 and
𝑛2

𝜎4
Var(𝐿(𝑤̂OLS)) → 2𝑑. (51)

Proof. Write 𝑋 = 𝑍Σ1/2 and recall that

𝐿(𝑤̂OLS) − 𝜎2 =


𝑤̂OLS −𝑤∗

2

Σ = ∥Σ1/2 (𝑋𝑇𝑋 )−1𝑋𝑇 𝜉 ∥2
2

= 𝜉𝑇𝑍 (𝑍𝑇𝑍 )−2𝑍𝑇 𝜉 .

First, we compute the expectation. By the tower law, we have

E𝐿(𝑤̂OLS) − 𝜎2 = E
[
E

[
𝜉𝑇𝑍 (𝑍𝑇𝑍 )−2𝑍𝑇 𝜉 | 𝑍

] ]
= 𝜎2 ETr((𝑍𝑇𝑍 )−1)

= 𝜎2 Tr(E
[
(𝑍𝑇𝑍 )−1

]
)

Proposition 2.1 of von Rosen [49] shows that

E[(𝑍𝑇𝑍 )−1] = 1

𝑛 − 𝑑 − 1

𝐼𝑑 ,

and so

E𝐿(𝑤̂OLS) = 𝜎2 + 𝜎2
𝑑

𝑛 − 𝑑 − 1

= 𝜎2
𝑛 − 1

𝑛 − 𝑑 − 1

.

To compute the variance, by the law of total variance, we have

Var(𝐿(𝑤̂OLS)) = Var(𝐿(𝑤̂OLS) − 𝜎2)

= EVar(𝜉𝑇𝑍 (𝑍𝑇𝑍 )−2𝑍𝑇 𝜉 | 𝑍 ) + Var(E(𝜉𝑇𝑍 (𝑍𝑇𝑍 )−2𝑍𝑇 𝜉 | 𝑍 ))

By the variance formula of Gaussian quadratic form, we have

Var(𝜉𝑇𝑍 (𝑍𝑇𝑍 )−2𝑍𝑇 𝜉 | 𝑍 ) = 2𝜎4 Tr((𝑍𝑇𝑍 )−2)

Proposition 2.1 of von Rosen [49] shows that

E[(𝑍𝑇𝑍 )−2] = 𝑛 − 1

(𝑛 − 𝑑) (𝑛 − 𝑑 − 1) (𝑛 − 𝑑 − 3) 𝐼𝑑 ,

and so

EVar(𝜉𝑇𝑍 (𝑍𝑇𝑍 )−2𝑍𝑇 𝜉 | 𝑍 ) = 2𝜎4𝑑 (𝑛 − 1)
(𝑛 − 𝑑) (𝑛 − 𝑑 − 1) (𝑛 − 𝑑 − 3) .

Manuscript submitted to ACM



Optimistic Rates: A Unifying Theory for Interpolation Learning and Regularization 51

To compute the second term, observe that

Var(E(𝜉𝑇𝑍 (𝑍𝑇𝑍 )−2𝑍𝑇 𝜉 | 𝑍 )) = 𝜎4 Var(Tr((𝑍𝑇𝑍 )−1))

= 𝜎4 Var(vec(𝐼𝑑 )𝑇 vec((𝑍𝑇𝑍 )−1))

= 𝜎4vec(𝐼𝑑 )𝑇 Var(vec((𝑍𝑇𝑍 )−1))vec(𝐼𝑑 )

Proposition 2.1 of von Rosen [49] shows that

Var(vec((𝑍𝑇𝑍 )−1)) =
𝐼𝑑2 +

∑
𝑖, 𝑗 (𝑒𝑖 ⊗ 𝑒 𝑗 ) (𝑒𝑇𝑗 ⊗ 𝑒𝑇

𝑖
)

(𝑛 − 𝑑) (𝑛 − 𝑑 − 1) (𝑛 − 𝑑 − 3) + 2

vec(𝐼𝑑 )vec(𝐼𝑑 )𝑇
(𝑛 − 𝑑) (𝑛 − 𝑑 − 1)2 (𝑛 − 𝑑 − 3)

and so

1

𝜎4
Var(E(𝜉𝑇𝑍 (𝑍𝑇𝑍 )−2𝑍𝑇 𝜉 | 𝑍 )) = 2𝑑

(𝑛 − 𝑑) (𝑛 − 𝑑 − 1) (𝑛 − 𝑑 − 3) +
2𝑑2

(𝑛 − 𝑑) (𝑛 − 𝑑 − 1)2 (𝑛 − 𝑑 − 3)

=
2𝑑 (𝑛 − 1)

(𝑛 − 𝑑) (𝑛 − 𝑑 − 1)2 (𝑛 − 𝑑 − 3)
.

Finally, we have shown that

Var(𝐿(𝑤̂OLS)) = 2𝜎4
𝑑 (𝑛 − 1)

(𝑛 − 𝑑 − 1)2 (𝑛 − 𝑑 − 3)
. □

Theorem 14. Under the model assumptions in (1) with 𝑑 ≤ 𝑛, consider the ordinary least square estimator 𝑤̂OLS =

(𝑋𝑇𝑋 )−1𝑋𝑇𝑌 and denote 𝛾 = 𝑑/𝑛. Assume that 𝛾 ≤ 0.999, then with probability at least 1 − 𝛿 , it holds that

𝐿(𝑤̂OLS) −
𝜎2

1 − 𝛾 ≲ 𝜎
2

√
𝛾 log(36/𝛿)

𝑛
.

Proof. We are interested in the excess risk:

𝐿(𝑤̂OLS) − 𝜎2 = ∥Σ1/2 (𝑤̂OLS −𝑤∗)∥2 = ∥(𝑍𝑇𝑍 )−1𝑍𝑇 𝜉 ∥2 .

Notice that

∥(𝑍𝑇𝑍 )−1𝑍𝑇 𝜉 ∥2 =
(
(𝑍𝑇𝑍 )−1/2𝑍𝑇 𝜉

)𝑇
(𝑍𝑇𝑍 )−1

(
(𝑍𝑇𝑍 )−1/2𝑍𝑇 𝜉

)
and we have the following equality:

𝑏𝑇 (𝑍𝑇𝑍 )−1𝑏 = max

𝑢
−∥𝑍𝑢∥2 + 2⟨𝑢,𝑏⟩

= max

𝑢
min

𝑣
∥𝑣 ∥2 + 2⟨𝑣, 𝑍𝑢⟩ + 2⟨𝑢,𝑏⟩.

We can plug in (𝑍𝑇𝑍 )−1/2𝑍𝑇 𝜉 into 𝑏. The 𝑏 termmay seem a bit complicated, but the key observation is that conditioned

on 𝑍 , the distribution of (𝑍𝑇𝑍 )−1/2𝑍𝑇 𝜉 ∼ N(0, 𝜎2𝐼𝑑 ) actually does not depend on 𝑍 , and so they are independent.

Therefore, we can condition on 𝑏 = (𝑍𝑇𝑍 )−1/2𝑍𝑇 𝜉 and the law of 𝑍 remains unchanged. To apply Theorem 16, we

need use a truncation argument. Define the truncated problem as

Φ𝑟 = max

∥𝑢 ∥≤𝑟
min

𝑣
∥𝑣 ∥2 + 2⟨𝑣, 𝑍𝑢⟩ + 2⟨𝑢,𝑏⟩, (96)

then by Lemma 5, we have

Pr

(
𝐿(𝑤̂OLS) − 𝜎2 > 𝑡 | (𝑍𝑇𝑍 )−1/2𝑍𝑇 𝜉 = 𝑏

)
= Pr

(
lim

𝑟→∞
Φ𝑟 > 𝑡

)
≤ lim

𝑟→∞
Pr (Φ𝑟 > 𝑡) .

Manuscript submitted to ACM



52 Lijia Zhou, Frederic Koehler, Danica J. Sutherland, and Nathan Srebro

Given 𝑢, the minimizer 𝑣 = −𝑍𝑢 satisfies ∥𝑣 ∥ ≤ 𝑟 ∥𝑍 ∥ and so for any𝑀 > 0, we have

Pr (Φ𝑟 > 𝑡) ≤ Pr

(
max

∥𝑢 ∥≤𝑟
min

∥𝑣 ∥≤𝑟𝑀
∥𝑣 ∥2 + 2⟨𝑣, 𝑍𝑢⟩ + 2⟨𝑢,𝑏⟩ > 𝑡

)
+ Pr(∥𝑍 ∥ ≥ 𝑀)

≤ 2 Pr

(
max

∥𝑢 ∥≤𝑟
min

∥𝑣 ∥≤𝑟𝑀
∥𝑣 ∥2 + 2∥𝑣 ∥⟨𝐻,𝑢⟩ + 2∥𝑢∥⟨𝐺, 𝑣⟩ + 2⟨𝑢,𝑏⟩ > 𝑡

)
+ Pr(∥𝑍 ∥ ≥ 𝑀)

= 2 Pr

(
max

∥𝑢 ∥≤𝑟
min

∥𝑣 ∥≤𝑟𝑀
∥𝑣 ∥2 + 2∥𝑣 ∥ (⟨𝐻,𝑢⟩ − ∥𝐺 ∥∥𝑢∥) + 2⟨𝑢,𝑏⟩ > 𝑡

)
+ Pr(∥𝑍 ∥ ≥ 𝑀)

by Gaussian minimax theorem. On the event that ∥𝐺 ∥ ≥ ∥𝐻 ∥, the minimizer is

∥𝑣 ∥ = ∥𝐺 ∥∥𝑢∥ − ⟨𝐻,𝑢⟩ ≥ (∥𝐺 ∥ − ∥𝐻 ∥)∥𝑢∥ > 0.

At the same time, we have

∥𝑣 ∥ ≤ 𝑟 (∥𝐺 ∥ + ∥𝐻 ∥)

and so

Pr (Φ𝑟 > 𝑡) ≤ 2 Pr

(
max

∥𝑢 ∥≤𝑟
2⟨𝑢,𝑏⟩ − (⟨𝐻,𝑢⟩ − ∥𝐺 ∥∥𝑢∥)2 > 𝑡, ∥𝐺 ∥ > ∥𝐻 ∥

)
+ 2 Pr(∥𝐺 ∥ ≤ ∥𝐻 ∥)

+ 2 Pr(∥𝐺 ∥ + ∥𝐻 ∥ ≥ 𝑀) + Pr(∥𝑍 ∥ ≥ 𝑀).

As the max over {𝑢 : ∥𝑢∥ ≤ 𝑟 } is always smaller than the overall max, taking𝑀 → ∞, we have

Pr (Φ𝑟 > 𝑡) ≤ 2 Pr

(
max

𝑢
2⟨𝑢,𝑏⟩ − (∥𝐺 ∥∥𝑢∥ − ⟨𝐻,𝑢⟩)2 > 𝑡, ∥𝐺 ∥ > ∥𝐻 ∥

)
+ 2 Pr(∥𝐺 ∥ ≤ ∥𝐻 ∥)

Observe that any 𝑢 can be decomposed into two parts: one part spanned by 𝑏 and the other part in the orthogonal

complement of 𝑏. Formally, we write 𝑢 = 𝛼𝑏 + 𝑘 where ⟨𝑘, 𝑏⟩ = 0, and the problem becomes

max

𝛼 ∈R, ⟨𝑘,𝑏 ⟩=0
2𝛼 ∥𝑏∥2 −

(
∥𝐺 ∥ ·

√
𝛼2∥𝑏∥2 + ∥𝑘 ∥2 − ⟨𝐻,𝑘⟩ − 𝛼 ⟨𝐻,𝑏⟩

)
2

.

Define 𝑃 = 𝐼𝑑 − 𝑏𝑏𝑇

∥𝑏 ∥2 . On the event that ∥𝐺 ∥ > ∥𝐻 ∥, the quantity inside the square is always positive and so we want

to choose the direction of 𝑘 that make ⟨𝐻,𝑘⟩ as large as possible:

max

𝛼 ∈R
2𝛼 ∥𝑏∥2 − min

⟨𝑘,𝑏 ⟩=0

(
∥𝐺 ∥ ·

√
𝛼2∥𝑏∥2 + ∥𝑘 ∥2 − ⟨𝐻,𝑘⟩ − 𝛼 ⟨𝐻,𝑏⟩

)
2

=max

𝛼 ∈R
2𝛼 ∥𝑏∥2 −

(
min

⟨𝑘,𝑏 ⟩=0
∥𝐺 ∥ ·

√
𝛼2∥𝑏∥2 + ∥𝑘 ∥2 − ⟨𝐻,𝑘⟩ − 𝛼 ⟨𝐻,𝑏⟩

)
2

=max

𝛼 ∈R
2𝛼 ∥𝑏∥2 −

(
min

𝛽≥0
∥𝐺 ∥ ·

√
𝛼2∥𝑏∥2 + 𝛽2 − 𝛽 ∥𝑃𝐻 ∥ − 𝛼 ⟨𝐻,𝑏⟩

)
2

=max

𝛼 ∈R
2𝛼 ∥𝑏∥2 −

(
|𝛼 | · ∥𝑏∥

√
∥𝐺 ∥2 − ∥𝑃𝐻 ∥2 − 𝛼 ⟨𝐻,𝑏⟩

)
2

≤max

𝛼 ∈R
2𝛼 ∥𝑏∥2 − 𝛼2∥𝑏∥2

(√
∥𝐺 ∥2 − ∥𝑃𝐻 ∥2 − |⟨𝐻,𝑏⟩|

∥𝑏∥

)
2

=
∥𝑏∥2(√

∥𝐺 ∥2 − ∥𝑃𝐻 ∥2 − | ⟨𝐻,𝑏 ⟩ |
∥𝑏 ∥

)
2
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By the tower law, we have shown that

Pr

(
𝐿(𝑤̂OLS) − 𝜎2 >

∥𝑏∥2
𝑡

)
≤ 2 Pr (∥𝐺 ∥ ≤ ∥𝐻 ∥) + 2 Pr

(√
∥𝐺 ∥2 − ∥𝑃𝐻 ∥2 − |⟨𝐻,𝑏⟩|

∥𝑏∥ <
√
𝑡, ∥𝐺 ∥ > ∥𝐻 ∥

)
= 2 Pr

(
∥𝐺 ∥ ≤ ∥𝐻 ∥ or

√
∥𝐺 ∥2 − ∥𝑃𝐻 ∥2 − |⟨𝐻,𝑏⟩|

∥𝑏∥ <
√
𝑡, ∥𝐺 ∥ > ∥𝐻 ∥

)
For the simplicity of notation, denote

𝜖 = 2

√
log(32/𝛿)

𝑛
.

By a union bound, with probability at least 1 − 𝛿/2, the following occurs:

(1) by Lemma 2 and the fact that 𝑏 ∼ N(0, 𝜎2𝐼𝑑 ), it holds that

∥𝐺 ∥2 ≥ 𝑛(1 − 𝜖)2

∥𝑃𝐻 ∥2 ≤ 𝑛(√𝛾 + 𝜖)2 and ∥𝑏∥2 ≤ 𝜎2𝑛(√𝛾 + 𝜖)2

(2) As
⟨𝐻,𝑏 ⟩
∥𝑏 ∥ ∼ N(0, 1), by standard Gaussian concentration, it holds that

|⟨𝐻,𝑏⟩|
∥𝑏∥ ≤ 𝜖

√
𝑛

Therefore, for sufficiently large 𝑛, we have ∥𝐺 ∥ > ∥𝐻 ∥ and we can pick 𝑡 by setting

√
𝑡 =

√
𝑛(1 − 𝜖)2 − 𝑛(√𝛾 + 𝜖)2 − 𝜖

√
𝑛

and so with probability at least 1 − 𝛿 , we have

𝐿(𝑤̂OLS) − 𝜎2 ≤
𝜎2 (√𝛾 + 𝜖)2(√

(1 − 𝜖)2 − (√𝛾 + 𝜖)2 − 𝜖
)2 .

It is then routine to check the desired bound. □
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