
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Language Models in the Loop: Incorporating Prompting into Weak Supervision

RYAN SMITH∗, Snorkel AI, USA

JASON A. FRIES∗, Stanford University and Snorkel AI, USA

BRADEN HANCOCK, Snorkel AI, USA

STEPHEN H. BACH, Brown University and Snorkel AI, USA

We propose a new strategy for applying large pre-trained language models to novel tasks when labeled training data is limited. Rather
than apply the model in a typical zero-shot or few-shot fashion, we treat the model as the basis for labeling functions in a weak
supervision framework. To create a classifier, we first prompt the model to answer multiple distinct queries about an example and define
how the possible responses should be mapped to votes for labels and abstentions. We then denoise these noisy label sources using the
Snorkel system and train an end classifier with the resulting training data. Our experimental evaluation shows that prompting large
language models within a weak supervision framework can provide significant gains in accuracy. On the WRENCH weak supervision
benchmark, this approach can significantly improve over zero-shot performance, an average 19.5% reduction in errors. We also find
that this approach produces classifiers with comparable or superior accuracy to those trained from hand-engineered rules.

CCS Concepts: • Computing methodologies→ Machine learning approaches; Natural language processing.

Additional Key Words and Phrases: weak supervision, zero-shot learning

ACM Reference Format:
Ryan Smith, Jason A. Fries, Braden Hancock, and Stephen H. Bach. 2023. Language Models in the Loop: Incorporating Prompting into
Weak Supervision. ACM/IMS J. Data Sci. 1, 2, Article 1 (September 2023), 31 pages. https://doi.org/10.1145/3617130

1 INTRODUCTION

Large pre-trained language models [10, 17, 23, 40, 41] have shown remarkable zero-shot and few-shot performance
on a range of natural language tasks. By prompting them to answer queries, users can tap vast knowledge acquired
through large-scale self-supervised pre-training. Prompting [31] refers to the emerging practice of conditioning a
language model on an input representing a query and interpreting the output as a solution to the task. For example, in
a web spam classification task, we could give the prompt “The following comment is spam. Yes or No? Subscribe to
my channel! example.com/12345” and compute whether the continuation “Yes” or “No” is more probable to make a
prediction. Remarkably, large pre-trained models can generalize in non-trivial ways to unseen tasks [10, 36, 47, 58].
Beyond being useful for solving tasks directly, pre-trained language models are instances of foundation models [7], large
pre-trained models that can be used as the foundation for new models that are better suited to specialized tasks, either
because they are more accurate, less computationally expensive, or both. Building on top of foundation models is an

∗Equal contribution.

Authors’ addresses: Ryan Smith, ryan.smith@snorkel.ai, Snorkel AI, USA; Jason A. Fries, jason.fries@snorkel.ai, Stanford University and Snorkel AI, USA;
Braden Hancock, Snorkel AI, USA, braden@snorkel.ai; Stephen H. Bach, Brown University and Snorkel AI, USA, steve@snorkel.ai.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/3617130

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Smith, Fries, Hancock, and Bach

Subject
Matter
Expert

Does the following comment talk
about a song?

If “Yes” then SPAM
else ABSTAIN

If “Yes” then SPAM
else ABSTAIN

If “Yes” then NOT SPAM
else ABSTAIN

SPAM

Prompts Label Maps Labels
Does the following comment ask the
reader to do something?

Does the following comment
reference the speaker's channel?

Subscribe to my
channel!

example.com/123

Example to be Labeled

SPAM

ABSTAIN

Pre-Trained
Language

Model

Fig. 1. An overview of how a subject matter expert (SME) can use prompting to create weak supervision sources. The SME expresses
tests for signifiers of the class of interest as natural language prompts. The prompts are combined with unlabeled examples and given
to a pre-trained language model. The model’s responses are mapped to votes on the true label for the example.

important challenge for data science, as data scientists often need to create predictive models, particularly from limited
labeled training data. In this work, we investigate how to direct the knowledge contained in pre-trained language
models toward the creation of labeled training data for models that generalize beyond the performance of the source
language model.

Limited labeled training data is a major bottleneck in many areas of supervised machine learning. In recent years, the
area of programmatic weak supervision [66] has emerged to address this bottleneck. There are a range of techniques, but
generally they use multiple noisy heuristic labelers called labeling functions, such as hand-written code and other models,
to create training data for new tasks. These labelers are applied to abundant unlabeled data, and they either vote on the
correct label or abstain. Then, a label modeling stage attempts to resolve the conflicts among the labelers without access
to much or any ground truth labels. The resulting labels are finally used to train an end model that generalizes beyond the
labelers. This approach has seen many practical successes in areas such as information extraction [12, 21, 42] and medical
imaging [18, 20]. Programmatic weak supervision has also been deployed at major technology companies [5, 9, 28, 51].
Large pre-trained language models are an untapped resource as a potentially complementary source of heuristic labels.
In addition to the ease of specifying heuristics with natural language, we show that they can effectively capture a wide
range of fuzzy concepts that can be hard to express as traditional labeling functions written in code.

Despite this potential, naively prompting pre-trained models to label training data has several potential pitfalls. First,
language models are sensitive to the wording of prompts [26, 50]. Even models that have been fine-tuned on a variety
of prompt wordings can still be sensitive to phrasing [47, 57, 58]. Second, prompted language models are limited in the
complexity of the instructions they can follow [36, 57]. Tasks can have nuanced decision boundaries based on context.
For example, a link to a music video might be more likely to be spam on a news website but not spam on a video site. A
single prompt, even paraphrased into multiple variants to address model sensitivity, is often insufficient to capture the
full specification of a task. For these reasons, a framework for incorporating pre-trained language models into weak
supervision is needed that can incorporate significant amounts of subject matter expertise in a manner efficient for
users.

Prompting is an emerging area in natural language processing, and recent related works have explored using
prompted models as sources of supervision. Several works use pre-trained models to generate or modify text examples
conditioned on a desired label that can be used for training [8, 48, 60, 61]. Other recent works use pre-trained models
Manuscript submitted to ACM

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Language Models in the Loop: Incorporating Prompting into Weak Supervision 3

to aid in labeling unlabeled examples. Concurrently, Lang et al. [30] use co-training to iteratively generate training
data for variations of the same prompt. Also concurrently, Zhang et al. [69] use prompting and labeled training data to
suggest new labeling functions. Also concurrently, Chen et al. [13] propose using embeddings from foundation models
to capture which examples are best labeled by which labeling functions. Across these methods, there remains a need for
a framework that allows users to refine the contours of a decision boundary with multiple prompts, particularly when
labeled data is scare.

In this work, we propose a framework for incorporating prompting into programmatic weak supervision, in order to
address the above challenges and realize potential benefits from pre-trained language models (Figure 1). We model
prompts as labeling functions by adding additional metadata that maps possible completions to target labels or
abstentions. For example, if a task is to classify spam comments, a prompt could be “Does the following comment ask
the user to click a link?” If the language model responds positively, then this is an indication that the comment is spam.
On the other hand, if the model responds negatively then that might be mapped to an abstention because both spam
and non-spam comments can lack that property. We then model the outputs of the these labeling functions as usual:
using a label model to reason about the accuracies of the different prompts and create training data for an end model.
This approach is novel because it exploits pre-trained language models not just as zero- or few-shot learners, but as
rich sources of knowledge that can be queried in many complementary ways to create training data.

We conduct an extensive experimental study of this approach. Using the WRENCH [68] benchmark as a starting
point, we first demonstrate that many existing types of labeling functions expressed as code can be effectively translated
into natural language prompts. We show on a range of GPT-3 [10] and T0 [47] models that using these prompts for
zero-shot querying and using the resulting prompted predictions as labeling functions leads to end models that are more
accurate than those trained on the original labeling functions. Surprisingly, we find that using these translated labeling
functions works better in many cases than simply prompting the model to solve the task of interest. This result suggests
that pre-trained models contain more useful information than can be easily accessed by a single zero-shot prompt. The
additional domain knowledge provided by expressing complementary heuristics as prompts and describing how they
relate to the task of interest is a key ingredient for improved accuracy. We show empirically that these prompt-based
labeling functions usually make complementary, i.e. only weakly correlated mistakes, suggesting that the pre-trained
language is actually applying different heuristics based on different prompts.

In summary, our main contributions are:

• We propose expressing wide ranges of data-labeling heuristics as zero-shot prompts for pre-trained language
models, and using a label model to resolve their conflicts.

• We demonstrate the effectiveness of this new approach as a zero-shot learning approach, showing that prompting
pre-trained models with multiple heuristic tasks can significantly outperform directly prompting the model to
solve the task of interest, with an average improvement of 20.2 percentage points.

• We also show that translating labeling functions expressed as code into prompts can lead to significantly
improved weakly supervised models, with an average improvement of 7.1 percentage points, when using our
best language model, T0++ [47]

2 RELATEDWORK

This work builds on both weakly supervised machine learning and prompting with large pre-trained language models.
In this section, we overview the most closely related work.

Manuscript submitted to ACM

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Smith, Fries, Hancock, and Bach

2.1 Weakly Supervised Machine Learning

The difficulty of obtaining large amounts of labeled training data has longmotivated alternatives to traditional supervised
machine learning.Weak supervision refers to a broad family of techniques that attempts to learn from data that is noisily
or less precisely labeled than usual. Our focus is on programmatic weak supervision, in which the sources of supervision
are heuristic labelers, often called labeling functions that vote on the true labels of unlabeled examples [66]. Labeling
functions can be hand-written programs, models trained for related tasks, or even human annotators if available.
Labeling functions have their roots in work on distant supervision [15, 35], in which a single heuristic is used to label
data and the resulting labels are assumed to be noise-free. Ratner et al. [43] proposed the data programming paradigm
for weak supervision, in which multiple labeling functions that can disagree or abstain are available.

Using multiple labeling functions gives rise to the key technical challenge in programmatic weak supervision:
resolving their disagreements without access to ground truth, in order to create training data. The original formulation
of data programming uses a probabilistic generative model that assumes the ground truth label for each example is a
latent random variable that generates the outputs of the labeling functions. The parameters of the model are learned
by maximizing the likelihood of the observed outputs of the labeling functions. This model generalizes the classic
Dawid-Skene model [16] for crowdsourcing, i.e., learning from multiple human annotators. In the simplest case, the
label sources can be assumed to be conditionally independent given the true label. In practice, this approach often
works well. However, since programmatic heuristics might exhibit biases and correlations in more systematic ways
than human annotators, it is often advantageous to model more complex dependencies among the labeling functions.
Multiple methods for learning such dependencies from the labeling function outputs have been proposed [4, 44, 54].
Many of these techniques for data programming are integrated in the Snorkel system [42].

Programmatic weak supervision has been extended in many directions. Using adversarial learning instead of
maximum likelihood estimation can provide strong theoretical guarantees without assumptions on the distribution of
labels and labeling function outputs, but requires either a small amount of labeled data or other assumptions to constrain
the accuracy of the labeling functions [2, 33, 34]. Weak supervision can be applied to other settings like structured
prediction [45, 46, 49]. Labeling functions can incorporate additional forms of supervision beyond individual labels,
such as hierarchical multi-task supervision [44], partial labels [63], labels from misaligned spaces [67], or constraints [1].
Labeling functions can also be automatically constructed using a small amount of labeled data [53]. Another line of
work has extended the label modeling stage to incorporate features of the underlying data, in order to model which
types of examples each labeler is best at labeling [52]. Concurrent with our work, Chen et al. [13] proposed using large
pre-trained models to create representations for the label model. Our work differs in that we use large pre-trained
models to directly implement labeling functions as zero-shot predictors.

Finally, programmatic weak supervision is complementary to many other techniques for learning with limited labeled
data. It can be combined with semi-supervised learning [27], self-supervised learning [64], and active learning [6, 11].
Since our work creates labeling functions that can be modeled in the same way as traditional ones, they can also be
incorporated into all of these related frameworks.

2.2 Language Models and Prompting

Language models are trained to predict the next or missing words conditioned on a partial sequence of natural language
text. Neural-network-based language models have become ubiquitous in recent work in natural language processing
because they learn useful vector representations of text that can be incorporated into models for other tasks. Most

Manuscript submitted to ACM

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Language Models in the Loop: Incorporating Prompting into Weak Supervision 5

recently developed language models are based on transformer architectures [55]. Recently, there has been increasing
interest in prompting, an alternative way of exploiting language models [31]. Instead of using language models only as
feature encoders, prompting uses a language model’s ability to predict words to directly solve tasks. Tasks are posed
as natural language text called prompts, and the language model’s predictions for missing or subsequent words are
interpreted as task solutions. The language model can either be fine-tuned on specific prompts using labeled examples,
or it can be queried in a zero-shot fashion, i.e., prompted to solve tasks it has never been explicitly trained to solve.

Brown et al. [10] demonstrated that large pre-trained language models can solve zero-shot tasks. Other works showed
that the zero-shot abilities of large language models can be improved by further fine-tuning the language model on a
large mix of prompted tasks [36, 47, 58]. Despite these successes, there are still many challenges when using prompting
for zero-shot or few-shot learning. Models can be sensitive to the wording of the prompt [26, 47, 50, 57, 58], and many
works have tried to reduce this sensitivity and boost accuracy [36, 47, 58].

Several recent works have investigated other ways of creating or augmenting supervision using pre-trained language
models. Schick and Schütze [48] prompt language models to generate examples of a certain label, e.g., generating
documents with a specific topic. Ye et al. [61] generate data in an unsupervised way and then label them for training
using a simple classification rule. Chia et al. [14] generate examples expressing relations among entities to create training
data for relation extraction. Wu et al. [60] fine-tune language models to modify datasets so that they exhibit fewer biases,
and Bonifacio et al. [8] fine-tune them to modify datasets for different information retrieval tasks. Several works use
language models to generate “chains of thought” that can improve reasoning and be used for self-training [56, 59, 65].
In concurrent work, Lang et al. [30] use co-training to fine-tune language models, where the different views of the
data come via different prompts. Like other work on enforcing consistency among prompted outputs [3, 19], they
consider alternative wordings of the same task, whereas we focus on prompting multiple tasks to create supervision.
Also in concurrent work, PRBoost [69] uses labeled data and labeling function templates to prompt language models to
suggest additional labeling functions to human annotators. In contrast, we show that no modification of existing weak
supervision pipelines are needed to achieve good performance, and that sufficiently large pre-trained language models
are powerful sources of weak supervision.

3 WEAK SUPERVISION VIA PROMPTING

In this section we describe our proposed approach to incorporating large pre-trained language models into weakly
supervised machine learning. The goal is to enable data scientists and other subject matter experts to leverage these
resources more effectively. We focus on scenarios where users are not necessarily machine learning experts, meaning
that fine-tuning large models with gradient updates is either infeasible because of the size of the model or impossible
because they do not have access to the underlying model. Instead, they might only have API access and want to
exploit the large pre-trained model to create a new one that is higher quality and servable in production (i.e., not
prohibitively large to work with). Our presentation and experiments in Section 4 focus on the case where all supervision
comes via a language model, but this approach also naturally integrates with other forms of weak supervision, such as
hand-engineered programs.

3.1 Workflow

We first describe the workflow in our approach (Figure 2). In the the scenarios we consider, the user is a subject matter
expert (SME) who wants to create a classifier for unlabeled data. Continuing our running example, this could be a
classifier for detecting spam comments on a video website. They have access to a large amount of unlabeled data that

Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Smith, Fries, Hancock, and Bach

Subject
Matter
Expert

Prompt 3

Map 1

Prompting

Prompt 1

Prompt 2

Example to be Labeled

Pre-Trained
Language

Model

Unlabeled
Training Set

Expert Labeled
Development Set

Weak Supervision

Label 1

Label 2

Label 3

Label Model End Model

Estimated
Label

Text 1

Map 2Text 2

Map 3Text 3

Label Maps

Predictions

Examples

Metrics

Fig. 2. Language models in the loop: the overall framework for developing and applying prompted labeling functions. The subject
matter expert (SME) expresses their domain knowledge via prompts that are combined with unlabeled examples and given to a
pre-trained language model. The model’s responses are interpreted with label maps to produce votes on the true label. These votes
are denoised with a label model, and the resulting estimated labels are used to train an end model. Throughout the process, the SME
can refine their prompts by inspecting unlabeled examples and evaluating with a small labeled development set.

can be used for training. They also have access to a small (dozens up to hundreds of examples) development data set
that has been manually labeled. That development set will be used to evaluate modeling decisions like the choice of
prompts and tuning hyperparameters.

The SME then develops heuristics for labeling examples by inspecting unlabeled examples. These heuristics are
expressed as natural language prompts that capture some aspect or feature of the data that is likely to indicate the true
label. For example, in the case of labeling spam comments, the SME might notice by browsing comments that many
spam examples contain some call to action, such as asking the reader to click or visit a link. Enumerating all the ways
that a call to action could be expressed in natural language is challenging to do accurately, requiring the SME to curate
many keywords and regular expressions that are sufficiently precise. Alternatively, a simple prompt like “Does the
following comment ask the reader to do something?” has the potential to better capture this heuristic while requiring
less effort from the SME.

The SME’s heuristic prompts are encapsulated as prompted labeling functions. Prompted labeling functions consist of a
prompt template and a label map. The prompt template defines how the SME’s prompt is applied to unlabeled examples.
Unlabeled examples consist of one or more fields of text. In this work, we focus on Yes/No question answering-style
prompt templates. However our method generalizes to many prompt template and label map formats. In the case of
website comments, the text could be represented as a single field [TEXT] and the entire prompt template for a labeling
function could be

Does the following comment ask the reader to do something? [TEXT]

The label map then defines how responses by the pre-trained language model are mapped to votes on the true label for
the example. Our framework focuses on generative language models like T0 [47] and GPT-3 [10], so the responses can
be arbitrary text strings. The label map𝑀 : S → Y ∪ {∅} is a function from the set S of strings composed from the
Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Language Models in the Loop: Incorporating Prompting into Weak Supervision 7

pre-trained language model’s vocabulary to the set of labels Y and a special symbol ∅, which indicates that the labeling
function abstains, i.e., has no vote on that example. In the case of the above example prompt, a corresponding label map
would map positive responses like “Yes” and “True“ to the spam label, and all other responses to abstentions. SMEs can
also refine their prompts by evaluating their labeling functions on the unlabeled data and the small labeled development
data set. In this way, the SME enters a feedback loop, in which they can reword prompts and construct additional ones
to add complementary information. We discuss the development of prompted labeling functions further in Section 3.2.

After the SME has developed their prompted labeling functions, they can be plugged into many standard weak
supervision frameworks, such as Snorkel [42]. In such frameworks, the labeling functions are executed on all the
available unlabeled data to produce votes on what the correct label is. These votes are aggregated in the label model

that produces probabilistic estimates of the correct label. Finally, an appropriate end model, such as a deep neural
network, is trained for the classification task of interest by minimizing the expected empirical risk with respect to
the probabilistic estimates of the true labels. The resulting classifier can be used outside of this weak supervision
framework and independently from the underlying pre-trained language model. In this way, language models in the
loop enable SMEs to distill information locked away in large foundation models into smaller, more servable models. As
we show in Section 4, these resulting models can also often significantly improve over the accuracy obtained by using
the pre-trained model alone.

3.2 Developing Prompted Labeling Functions

We now discuss the advantages of writing prompted labeling functions, and how it differs from writing labeling
functions in code. Prompted labeling functions are a mechanism by which a large pre-trained model can be adapted
with limited labeled training data to new tasks. We find that large pre-trained models such as T0++ and GPT-3 exhibit
a phenomenon wherein they “know more than they realize,” in the sense that they can solve many other tasks that
provide useful signals about the task of interest, even if they do not know how to integrate those signals.

Weakly supervised machine learning is a natural paradigm for integrating these signals effectively. For example, in
the spam comment task, the zero-shot approach is to prompt the pre-trained language model with a prompt like “Is the
following comment spam?” In contrast, we propose using prompting to collect multiple signals related to the task of
interest. Examples from our experimental study (Section 4) are

(1) “Does the following comment ask the reader to do something?”
(2) “Does the following comment reference the speaker’s channel?”
(3) “Does the following comment contain the words ‘check out’?”

Each of these prompts, along with the associated label map, provides additional domain knowledge about the definition
of spam in this particular application. Task supervision is often multifaceted and difficult to summarize in a single
prompt. Pre-trained language models can have difficulty with long, nuanced instructions [36, 57]. Our approach breaks
down task supervision into salient components, expressed as multiple prompts capturing different aspects of labeling.

The above example prompts also illustrate the advantages that pre-trained language models can offer weakly
supervised machine learning. Standard rule-based labeling function expressed in code or via resources like term
dictionaries are brittle. In contrast, prompts can handle significant amounts of ambiguity. The three example prompts
above are arranged in order of decreasing ambiguity. Prompt (1) covers a wide range of scenarios that would be difficult
to enumerate with rules. Answering the prompt accurately likely requires an understanding of intent. Prompt (2) is in
the middle, in that it asks for references to a specific entity (the speaker’s channel), but that entity can be referred to in

Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Smith, Fries, Hancock, and Bach

PLM and RegEx
both flag 40% of

spam

PLM also flags
another 18%

RegEx also flags
another 5%

Flagged by RegEx (n=371)

Actual Spam (n=831)

Flagged by PLM (n=645)

Examples of PLM True Positives:
“Rap from Belarus, check my channel:)”

“Hey everyone. Watch this trailer!!!!!!!!”

“Please look at my channel”

Examples of PLM False Positives:
“Came here to check the views, goodbye.”

“Love this song makes me wanna dance!”

“This Song is AWESOME!!!!”

Examples of PLM False Negatives:
“Check me out I'm all about gaming ”

“Check out Melbourne shuffle, everybody!”

Fig. 3. A comparison of a regular expression (RegEx) labeling function from the WRENCH benchmark [68] with the corresponding
prompted labeling function using the T0++ [47] pre-trained language model (PLM). The regular expression looks for variations of the
phrase “check out” and the prompted labeling function uses the prompt “Does the following comment contain the words ‘check
out’?” RegEx has 100% precision and 45% recall, while PLM has 76% precision and 58% recall. This comparison shows that even simple
labeling functions can be made more general while maintaining acceptable precision by using prompting.

many ways, including indirectly, e.g., a comment like “Like and subscribe!” Prompt (3) is the most specific, asking if the
comment contains a specific phrase.

Surprisingly, even prompted labeling functions asking for a specific phrase have interesting, useful properties that
differ from traditional labeling functions. Figure 3 compares a prompted labeling function using prompt (3) with the
corresponding, traditional labeling function from the WRENCH benchmark for weak supervision [68] on the YouTube
comment spam dataset. The traditional labeling function is a regular expression that also checks for the phrase “check
out.” It is very precise, with 100% precision and 45% recall. The prompted labeling function has 76% precision and 58%
recall. The tradeoff is that the prompted labeling function finds many true positives that say something with a meaning
similar to “check out,” but also misfires on some false positives. This example illustrates that even with seemingly
straightforward heuristics like a simple regular expression, pre-trained language models can provide useful additional
flexibility. Our experiments in Section 4 show that this can be a favorable tradeoff for developers.

3.3 Calibration

We find that it is useful to improve the calibration of prompted labeling functions. Calibration is a measurement of how
strongly a model’s predicted probabilities correlate with observed accuracy, i.e., a predicted probability of 𝑝 should be
correct 𝑝 · 100% of the time. Current language models are not well-calibrated, with predicted probabilities subject to
several forms of biasing, e.g., favoring tokens observed more during pretraining or tokens that appear near the end of a
prompt [26, 70]. Miscalibration creates challenges in prompting, which requires choosing the most likely answer from
a set of candidate text completions. When using prompts as labelers, we may also want to threshold predictions to
select only the most confident answers. Popular recalibration methods such as Platt and vector scaling [25, 39] require
labeled data to learn a transformation of the model’s predicted probabilities, creating challenges to directly applying
these methods in zero-shot settings. Instead, we use contextual calibration [70], where scaling weights are estimated
from the predicted token probabilities of a prompt queried using “content-free" or null input instances. Contextual
calibration has demonstrated empirical performance gains when used in prompt-based, few-shot classification. We use
the tokens { N/A, 𝜖 , [MASK], NULL, <|endoftext|> } as our null inputs, using the average predicted probabilities per
Manuscript submitted to ACM

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Language Models in the Loop: Incorporating Prompting into Weak Supervision 9

token to estimate our scaling weights for each prompt. The resulting transformation is then applied to each prompted
labeling function’s predictions.

4 EXPERIMENTAL STUDY

We conduct an experimental study to evaluate how incorporating prompted labeling functions compare with two
alternatives: (1) distilling pre-trained language models in a zero-shot fashion, and (2) hand-written labeling functions. We
use the WRENCH benchmark [68] for weak supervision in order to control the choice of labeling functions. WRENCH
provides traditional labeling functions that we translate into corresponding prompted labeling functions for comparison.
We find that

(1) Creating models via prompted labeling functions can significantly outperform directly prompting the model to
solve the task of interest, with an average improvement of 20.2 percentage points, and

(2) Translating labeling functions expressed as code into prompts can lead to significantly improved weakly
supervised models, with an average improvement of 7.1 percentage points, when using our best language model,
T0++ [47].

4.1 Datasets

The WRENCH benchmark includes 22 diverse datasets for evaluating weakly supervised learning [68]. Datasets include
labeling function sets for programmatically creating labeled training data and corresponding manually curated gold
labels for evaluation. We focus on a subset of text classification tasks: YouTube, SMS, and Spouse. Note that 4 WRENCH
datasets (IMDB, Yelp, AG News, TREC) were used as part of T0++ training, thus we exclude them from our analysis.
Dataset summary statistics are outlined in Table 1. Also note that even though these datasets are all binary classification,
this is not an inherent limitation. Label maps can choose among many possible labels, and many standard label models
for weak supervision support multiclass classification.

Name Task #Labels Class Labels 𝑃 (positive) #LFs Train Valid. Test

YouTube Spam Detection 2 HAM,SPAM 0.488 (0.02) 10 1,586 120 250
SMS Spam Detection 2 HAM,SPAM 0.132 (<0.01) 73 4,571 500 500
Spouse Relation Extraction 2 NOT_SPOUSE,SPOUSE 0.074 (<0.01) 9 22,254 2,801 2,701

Table 1. Summary statistics for our WRENCH text classification datasets. 𝑃 (positive) is the class balance of the positive label (SPAM
or SPOUSE depending on the task) calculated as the mean and standard error of relative frequency for all gold labeled splits.

4.2 Translating WRENCH Labeling Functions into Prompts

Labeling functions are developed by SMEs via data exploration, which entails iteratively designing labeling rules by
inspecting unlabeled examples and a small, hand-labeled development set. For WRENCH datasets, this process has
already occurred, so our experiments focus on translating existing labeling rules into prompted form. We note this is a
more restricted setting than if SMEs developed prompts initially, as WRENCH labeling functions are biased towards
rules that are easy to express in code while prompts have more flexibility. All labeling function prompts are formulated
as Yes/No questions and a label map that transforms text completions into class labels or abstains (i.e., not emitting a
label).

For example, consider a WRENCH labeling function written in Python for the Spouse task, which uses keywords
occurring between person mentions to label negative training examples by identifying likely family members.

Manuscript submitted to ACM

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Smith, Fries, Hancock, and Bach

def lf_familial_relationship(x):

family = {"father", "mother", "sister", "brother", "son", "daughter", "uncle", "aunt"}

return NOT_SPOUSE if len(family.intersection(set(x.between_tokens))) > 0 else ABSTAIN}

Instead of enumerating an incomplete list of keywords describing family relationships, our prompt focuses on the
general insight conveyed by the labeling function.

Context: [TEXT]\n\nAre [PERSON1] and [PERSON2] family members? ↦→ {yes:NOT_SPOUSE, no:ABSTAIN}

Prompts were developed for GPT-3 and T0++ separately by iteratively querying each language model with unlabeled
training instances, performing an ad hoc performance assessment, and then selecting a single prompt to use per labeling
function. This mirrors the process by which a SME might query a language model to guide prompt development. The
complete list of WRENCH prompts used in this work are found in Appendix §6.4.

4.3 Comparing Programmatic Labelers

Dataset Model Prompt

YouTube T0++ Is the following comment spam?\n\n"[TEXT]"
SMS T0++ Is the following text message spam?\n\n"[TEXT]"
Spouse T0++ Context: "[TEXT]"\n\nAre [PERSON2] and [PERSON1] married?

YouTube GPT-3 Q: Is the following comment "[TEXT]" spam? \nA:
SMS GPT-3 Q: Is the following text message "[TEXT]" spam? \nA:
Spouse GPT-3 Context: "[TEXT]"\nQ: Are [PERSON1] and [PERSON2] married? \nA:

Table 2. Zero-shot prompts for all datasets and language model families. [TEXT], [PERSON1], [PERSON2] are populated with text
from the target example. Label maps are {no:HAM, yes:SPAM} for YouTube/SMS and {no:NOT_SPOUSE, yes:SPOUSE} for Spouse.

We compare three approaches for programmatically generating training labels, following the typical workflow used
for weakly supervised learning. For each dataset in our analysis, we assume the original training split is unlabeled.
All labelers, here prompted labeling functions and code-based labeling functions, are applied to the unlabeled training
split to generate votes for the true label of each example. All prompts are calibrated using contextual calibration. All
labeler votes, unless otherwise noted, are combined and denoised using the FlyingSquid [22] label model to estimate
a single, probabilistic consensus label per example. The resulting labels are used to train a RoBERTa [32] end model,
which provides a smaller, more servable classification model tailored to our task of interest. All model performance
measures are then evaluated using gold labeled test splits. The three approaches we compare are:

(1) WRENCH Benchmark: The original WRENCH labeling functions released as part of the benchmark. Here
majority vote (i.e., the mode of all labeling function outputs per example) is used as the label model since it
performed the best when used with RoBERTa for all three of our tasks.

(2) Zero Shot: A zero-shot baseline where training data is labeled by one prompt that queries a language model for
an example’s class label. Prompts are outlined in Table 2 and were designed to align with prompts commonly
used in zero shot learning by providing a simple, but often underconstrained, task description.

(3) Prompted Weak Supervision: The prompted versions of the WRENCH labeling functions. These labelers reflect
the prototypical weakly supervised workflow, except we have replaced manually coded labeling functions with
prompted versions.

Manuscript submitted to ACM

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Language Models in the Loop: Incorporating Prompting into Weak Supervision 11

4.4 Large Language Models

All prompts are evaluated using two different language model families: GPT-3 and T0++. We use the InstructGPT [38]
family of GPT-3 engines, evaluating Ada, Babbage, and Curie since different engines are claimed to be better suited to
specific tasks.1. DaVinci was not used due to cost constraints (see complete pricing for all GPT-3 queries in Appendix
§6.1). All queries were submitted via the OpenAI API between 01/24/2022–03/01/2022. Queries were restricted by the
API to include only the top 100 most likely text completions.

T0++ [47] is an open, publicly available 11B parameter model based on the T5 architecture [41]. T0++ is trained
using a large dataset of supervised tasks transformed into prompted training data. This explicit, multitask formulation
of prompted training data results in better zero-shot classification performance that often matches or exceeds the much
larger GPT-3. The model requires 42 GB of GPU memory to efficiently run locally without parameter offloading. We
used a p3.8xlarge AWS EC2 instance with 4 Tesla V100 GPUs for inference.

4.5 Evaluation Metrics

We evaluate all models using precision, recall, F1, and accuracy. Performance metrics are reported as the mean and
standard error of six training runs using different random seeds. Standard error is calculated using the sample standard
deviation. For direct comparisons with WRENCH, we report accuracy or F1 based on the default metric reported in
WRENCH benchmarks.

4.6 Results

YouTube (Accuracy) SMS (F1) Spouse (F1)

Zero Shot Prompted WS Zero Shot Prompted WS Zero Shot Prompted WS

WRENCH Benchmark - 94.9 (0.5) - 92.4 (0.5) - 37.9 (2.8)

T0++ 58.7 (2.4) 92.0 (0.5) 83.2 (2.4) 91.8 (1.6) 41.5 (13.1) 62.9 (0.8)
InstructGPT Curie 52.8 (0.0) 77.7 (1.9) 0.0 (0.0) 65.7 (5.8) 49.6 (1.0) 41.0 (0.9)
InstructGPT Babbage 78.5 (3.0) 85.1 (1.3) 32.2 (3.0) 23.6 (0.0) 40.9 (0.9) 34.9 (1.7)
InstructGPT Ada 51.7 (2.4) 52.9 (0.1) 26.3 (2.6) 28.3 (1.8) 19.1 (0.8) 17.7 (6.2)

Table 3. Performance metrics for Zero Shot and Prompted Weak Supervision (Prompted WS) using four large language models and
calibrated prompts. Scores are the mean/standard error of 6 training replicates with the best prompted model performance in bold.

4.6.1 Prompted Weak Supervision. Table 3 outlines the performance of Zero Shot and Prompted Weak Supervision
using four language models (T0++, InstructGPT family) compared against the WRENCH benchmark. Prompted weak
supervision outperforms the zero-shot baseline by an average of 18.2% (-26.7 to 100%) across all language models
and datasets. Contextual calibration is applied for both prompted weak supervison and the zero-shot baseline. T0++
consistently demonstrated strong performance, outperforming InstructGPT in all datasets when using Prompted Weak
Supervision. Considering only T0++ performance, Prompted Weak Supervision outperforms Zero Shot by an average of
39.5% (10.3 to 56.7%). In the InstructGPT models, Prompted Weak Supervision largely negatively impacted performance,
with performance gains consistently observed only in the YouTube dataset. Overall, the InstructGPT family performed
substantially worse than T0++, which outperformed InstructGPT Curie by an average of 37.2% (18.4 to 53.4%).

1See https://beta.openai.com/docs/engines/gpt-3

Manuscript submitted to ACM

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Smith, Fries, Hancock, and Bach

Using the T0++ model, prompted performance approaches or exceeds models trained using the WRENCH Benchmark
labeling functions. In the case of Spouse, T0++ significantly outperformed WRENCH labeling functions, improving
performance by 25 F1-score points when using Prompted Weak Supervision.

Dataset Language Model CC Precision Recall F1 ±F1 Acc. ±Acc.

YouTube T0++ ✓ 92.6 (0.5) 91.7 (0.5) 91.9 (0.5) -3.5 (0.6) 92.0 (0.5) -3.4 (0.6)
95.7 (0.4) 95.2 (0.5) 95.4 (0.4) – 95.4 (0.4) –

SMS T0++ ✓ 95.9 (2.5) 88.1 (1.1) 91.8 (1.6) +0.3 (2.5) 97.9 (0.4) +0.2 (0.7)
91.6 (3.2) 91.5 (0.8) 91.4 (1.6) – 97.7 (0.5) –

Spouse T0++ ✓ 54.2 (1.8) 75.4 (1.2) 62.9 (0.8) +18.0 (1.7) 92.8 (0.3) +10.0 (1.4)
30.7 (1.6) 86.0 (2.8) 44.9 (1.3) – 82.8 (1.2) –

YouTube InstructGPT Curie ✓ 80.1 (1.0) 77.1 (2.1) 76.7 (2.3) +0.8 (2.0) 77.7 (1.9) -0.1 (1.6)
84.8 (0.6) 76.4 (1.2) 75.9 (1.3) – 77.7 (1.1) –

SMS InstructGPT Curie ✓ 60.6 (11.5) 83.8 (4.4) 65.7 (5.8) +65.7 (5.8) 86.2 (3.9) -0.4 (3.9)
0.0 (0.0) 0.0 (0.0) 0.0 (0.0) – 86.6 (0.0) –

Spouse InstructGPT Curie ✓ 29.5 (0.9) 67.5 (2.0) 41.0 (0.9) +41.0 (0.9) 84.3 (0.7) -7.7 (0.7)
0.0 (0.0) 0.0 (0.0) 0.0 (0.0) – 91.9 (0.0) –

Table 4. The impact of contextual calibration (CC) on performance metrics for T0++ and InstructGPT Curie, the best performing
GPT-3 model when using calibrated prompts. Scores are the mean/standard error of 6 training replicates. Overall improvements due
to calibration are in bold.

4.6.2 Prompt Calibration. Calibration had significant performance impact on all language models. Table 4 contains the
overall benefit, in F1-score and accuracy, from using contextual calibration for T0++ and InstructGPT Curie. Complete
pre- and post-calibration performance scores for all models are reported in the Appendix §6.3. In many cases, calibration
provides significant performance improvements, with the largest increases seen in cases where the uncalibrated model
had pathological performance. Figure 4 provides additional insight into calibration, where prompts evaluated with
InstructGPT Curie and Ada often resulted in zero or extremely low coverage, causing training failures. Comparing
coverage and accuracy of the original WRENCH labeling functions against their prompted versions shows how prompts
result in much higher coverage than the same rule as expressed in code. For SMS, WRENCH keyword labeling functions
(the blue points) are high precision, low coverage and highly tailored to the SMS task. Despite this low coverage, an
end model trained with data generated by these labeling functions performs quite well, with 92.4 F1. For T0++ models,
prompts are noisier, with higher coverage and lower accuracy especially in the positive class. Despite this, by combining
and denoising signal across multiple prompts, T0++ achieves end model scores of 91.8 F1, only a 0.6 point drop. Similar
patterns can be observed for YouTube in Figure 7 and Spouse in Figure 8 in Appendix §6.3.

Figures 5 shows how contextual calibration, at the level of individual prompts, can result in an unclear trade-
off between accuracy and coverage. This plot presents the absolute change in accuracy and coverage between an
uncalibrated prompt its calibrated equivalent. Recalibration generally increases a prompt’s coverage, i.e., the number of
labeled points, often at the cost of decreased accuracy. For T0++ models, accuracy decreased an average of 1.5 points
while coverage increased by 2.4 points. For the InstructGPT models, the change is more substantial, with decreases in
accuracy of 2.0 to 10.5 points while coverage increased by 40 to 69.7 points. For the Babbage and Ada engines, many
prompts are driven to nearly 100% coverage, i.e., labeling the entire training set, due in part to a prompt responding
Manuscript submitted to ACM

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Language Models in the Loop: Incorporating Prompting into Weak Supervision 13

0% 25% 50% 75% 100%

0%

25%

50%

75%

100%

A
cc

ur
ac

y

0% 25% 50% 75% 100% 0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

Class Label
HAM
SPAM

Labeler
WRENCH Benchmark
T0++
InstructGPT Curie
InstructGPT Babbage
InstructGPT Ada

Coverage (Percentage of Training Set)

Calibrated Labeling Function Prompts (SMS)

0% 25% 50% 75% 100%

0%

25%

50%

75%

100%

A
cc

ur
ac

y

0% 25% 50% 75% 100% 0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

Class Label
HAM
SPAM

Labeler
WRENCH Benchmark
T0++
InstructGPT Curie
InstructGPT Babbage
InstructGPT Ada

Coverage (Percentage of Training Set)

Uncalibrated Labeling Function Prompts (SMS)

Fig. 4. SMS prompted labeling function coverage (x-axis) vs. accuracy (y-axis). The top figure is calibrated using contextual calibration
and the bottom is uncalibrated. WRENCH Benchmark labeling function performance is in blue in every subfigure, which in SMS
favors high precision, extremely low-coverage (< 2%).

with the same answer for every example. Only T0++ and InstructGPT Curie consistently improve prompt accuracy in
the positive (minority) class. The negative class in T0++ had very little change in accuracy, with calibration increasing
coverage at little-to-no change in accuracy. T0++ is the only language model where calibration consistently resulted in
more conservative labelers, i.e., prompts where accuracy increased and coverage decreased. Class-conditional views of
these figures are available in the Appendix §6.3.

4.6.3 Diversity Measures. A key factor influencing labeling function performance is how they interact with other
labeling functions. As in ensembling, we want labelers that provide complimentary information and have low correlated
error rates, which improves ensemble efficiency and enables combining many weak classifiers to achieve stronger
classification performance. To gain insight into the diversity of prompted labeling functions, we compute metrics
informed by ensemble diversity measures [29]. Given a pair of labelers, 𝑖 and 𝑗 , we construct a 2x2 contingency table
of vote counts for pairs of unlabeled examples. In binary classification, where 𝑁 𝑖 𝑗 is the total number of label pairs
emitted by labelers 𝑖 and 𝑗 , this table contains 𝑁 00 + 𝑁 10 + 𝑁 01 + 𝑁 11 covered instances. We consider the following
diversity measures defined using these counts, normalizing all measures by the total size of the unlabeled training set.

(1) Agreement := 𝑁 00 + 𝑁 11

(2) Disagreement := 𝑁 10 + 𝑁 01

(3) Double Fault := 𝑁 00

(4) Double Correct := 𝑁 11

Agreement and disagreement provide measures of correlation between two labeling function prompts and enable
characterizing the degree to which prompts provide complimentary label information.

Manuscript submitted to ACM

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Smith, Fries, Hancock, and Bach

-100% -50% 0% +50% +100%
 Coverage

-100%

-50%

0%

+50%

+100%

 A
cc

ur
ac

y

-100% -50% 0% +50% +100%
 Coverage

-100% -50% 0% +50% +100%
 Coverage

-100%

-50%

0%

+50%

+100%

 A
cc

ur
ac

y

-100% -50% 0% +50% +100%
 Coverage

Labeler
T0++
InstructGPT Curie
InstructGPT Babbage
InstructGPT Ada

Labeler
T0++
InstructGPT Curie
InstructGPT Babbage
InstructGPT Ada

Labeler
T0++
InstructGPT Curie
InstructGPT Babbage
InstructGPT Ada

Labeler
T0++
InstructGPT Curie
InstructGPT Babbage
InstructGPT Ada

Class Label
Negative
Positive

Contextual Calibration: Impact on Accuracy and Coverage

Fig. 5. Absolute change in accuracy and coverage after contextual calibration for all prompted labeling functions and language
models. Each subfigure contains points from all datasets. The x-axis is change in coverage, the y-axis is change in accuracy, and each
point reflects the change in that prompt’s labeling performance after calibration.

Figure 6 shows a heatmap view of pairwise diversity of the YouTube dataset. Note there is more variation (disagree-
ment) in the T0++ models and less agreement (double fault and double correct) compared to the InstructGPT family
of models. The Babbage model, for example, generates strongly correlated labels and less variation in label signal.
T0++ has higher variation in labels and less correlated errors across both classes. Lower correlated errors suggests that
prompts evaluated using T0++ are providing complimentary label information, resulting in greater ensemble efficiency
and improving overall model performance [24]. Similar patterns are observed in the other datasets (see Appendix §6.5).

5 DISCUSSION AND CONCLUSION

Developing flexible methods to query and adapt large-scale foundation models for downstream tasks is emerging as
a critical component of machine learning systems. Our work demonstrates several benefits of using prompted weak
supervision to query and repurpose information found in language models. Combining multiple prompted labeling
functions provides significant improvements over underspecified prompts commonly used for zero-shot classification.
By formulating tasks using multiple prompts, prompted weak supervision provides an inspectable mechanism for
contextualizing task insight and querying knowledge found in large language models.

Prompts provide several advantages that compliment traditional code-based labeling functions. Unlike code, which
is static and potentially expensive to refine, prompts are interpreted by an underlying language model, meaning the
Manuscript submitted to ACM

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Language Models in the Loop: Incorporating Prompting into Weak Supervision 15

HAM SPAM

HAM

SPAMT0
++

 (Y
ou

Tu
be

)

Disagreement

HAM SPAM

HAM

SPAM

Double Fault

HAM SPAM

HAM

SPAM

Double Correct

0% 25% 50% 0% 25% 50% 0% 25% 50%

HAM SPAM

HAM

SPAM

In
st

ru
ct

G
P

T
C

ur
ie

 (Y
ou

Tu
be

)

Disagreement

HAM SPAM

HAM

SPAM

Double Fault

HAM SPAM

HAM

SPAM

Double Correct

0% 25% 50% 0% 25% 50% 0% 25% 50%

HAM SPAM

HAM

SPAM

In
st

ru
ct

G
P

T
B

ab
ba

ge
 (Y

ou
Tu

be
)

Disagreement

HAM SPAM

HAM

SPAM

Double Fault

HAM SPAM

HAM

SPAM

Double Correct

0% 25% 50% 0% 25% 50% 0% 25% 50%

HAM SPAM

HAM

SPAM

In
st

ru
ct

G
P

T
A

da
 (Y

ou
Tu

be
)

Disagreement

HAM SPAM

HAM

SPAM

Double Fault

HAM SPAM

HAM

SPAM

Double Correct

0% 25% 50% 0% 25% 50% 0% 25% 50%

Fig. 6. YouTube prompted labeling function pairwise diversity measures: disagreement (left), double fault (center), double correct
(right). Each matrix cell represents the percentage of training examples, indicated by color intensity, where prompts 𝑖, 𝑗 both label an
example. Rows are sorted by class label (one per-prompt) to emphasize block structure. Note some blocks are zero by definition, e.g.,
double fault measures when two prompts both emit the same incorrect label so the SPAM/HAM block is zero.

Manuscript submitted to ACM

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Smith, Fries, Hancock, and Bach

labels generated by prompts may improve as language models themselves continue improving. Moreover, the prompts
explored in this work likely underestimate the potential performance of our approach, as we focused on translating
existing labeling functions rather than developing and refining new prompts.

In our experiments, T0++, which was pretrained with multi-task prompted examples, consistently outperforms the
InstructGPT family of language models when used for prompted weak supervision. Future work may consider methods
of generating additional prompted pretraining data that aligns more closely with how SMEs approach prompt design
in weakly supervised workflows. This is a particularly exciting use of data exhaust, as the process of querying and
interacting with a language model can be used to directly improve the quality of the underlying model [38].

Finally, the success of contextual calibration underscores the benefits and current limitations of recalibration methods
for prompt-based zero-shot learning. Performance gains, while consistent at the level of collections of prompts, is
inconsistent and brittle at the level of an individual prompt. As new methods continue to improve language model
calibration, we expect prompted weak supervision to benefit by increasing the ability of SMEs to refine the operating
threshold of individual labeling functions.

ACKNOWLEDGMENTS

The authors would like to thank the rest of the research team at Snorkel AI for the many helpful conversations and
feedback on this work. Figures 1 and 2 incorporate this image by Viktorvoight (CC BY-SA 3.0). Disclosure: Jason Fries
and Stephen Bach contributed to this work as advisors to Snorkel AI.

REFERENCES
[1] Chidubem Arachie and Bert Huang. 2021. Constrained Labeling for Weakly Supervised Learning. In Uncertainty in Aritficial Intelligence (UAI).
[2] Chidubem Arachie and Bert Huang. 2021. A general framework for adversarial label learning. Journal of Machine Learning Research 22, 118 (2021),

1–33.
[3] Anonymous Authors. 2022. Prompt Consistency for Zero-Shot Task Generalization. Submitted to ACL Rolling Review. https://openreview.net/pdf?

id=Ig8xeTpEmHf
[4] Stephen H. Bach, Bryan He, Alexander Ratner, and Christopher Ré. 2017. Learning the Structure of Generative Models without Labeled Data. In

International Conference on Machine Learning (ICML).
[5] Stephen H. Bach, Daniel Rodriguez, Yintao Liu, Chong Luo, Haidong Shao, Cassandra Xia, Souvik Sen, Alexander Ratner, Braden Hancock, Houman

Alborzi, Rahul Kuchhal, Christopher Ré, and Rob Malkin. 2019. Snorkel DryBell: A Case Study in Deploying Weak Supervision at Industrial Scale.
In ACM SIGMOD Conference on Management of Data (SIGMOD) Industry Track.

[6] Samantha Biegel, Rafah El-Khatib, Luiz Otavio Vilas Boas Oliveira, Max Baak, and Nanne Aben. 2021. Active WeaSuL: Improving Weak Supervision
with Active Learning. In ICLR Workshop on Weakly Supervised Learning.

[7] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S Bernstein, Jeannette Bohg, Antoine
Bosselut, Emma Brunskill, et al. 2021. On the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258 (2021).

[8] Luiz Bonifacio, Hugo Abonizio, Marzieh Fadaee, and Rodrigo Nogueira. 2022. InPars: Data Augmentation for Information Retrieval using Large
Language Models. arXiv preprint arXiv:2202.05144 (2022).

[9] Eran Bringer, Abraham Israeli, Yoav Shoham, Alex Ratner, and Christopher Ré. 2019. Osprey: Weak supervision of imbalanced extraction problems
without code. In International Workshop on Data Management for End-to-End Machine Learning (DEEM).

[10] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, et al. 2020. Language models are few-shot learners. Neural Information Processing Systems (NeurIPS) (2020).

[11] Clemens-Alexander Brust, Christoph Käding, and Joachim Denzler. 2020. Active and incremental learning with weak supervision. KI-Künstliche
Intelligenz 34, 2 (2020), 165–180.

[12] Alison Callahan, Jason A Fries, Christopher Ré, James I Huddleston, Nicholas J Giori, Scott Delp, and Nigam H Shah. 2019. Medical device
surveillance with electronic health records. NPJ digital medicine 2, 1 (2019), 1–10.

[13] Mayee F Chen, Daniel Y Fu, Dyah Adila, Michael Zhang, Frederic Sala, Kayvon Fatahalian, and Christopher Ré. 2022. Shoring Up the Foundations:
Fusing Model Embeddings and Weak Supervision. arXiv preprint arXiv:2203.13270 (2022).

[14] Yew Ken Chia, Lidong Bing, Soujanya Poria, and Luo Si. 2022. RelationPrompt: Leveraging Prompts to Generate Synthetic Data for Zero-Shot
Relation Triplet Extraction. In Findings of the Association for Computational Linguistics.

Manuscript submitted to ACM

https://commons.wikimedia.org/wiki/File:Scientist.svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://openreview.net/pdf?id=Ig8xeTpEmHf
https://openreview.net/pdf?id=Ig8xeTpEmHf

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Language Models in the Loop: Incorporating Prompting into Weak Supervision 17

[15] Mark Craven, Johan Kumlien, et al. 1999. Constructing biological knowledge bases by extracting information from text sources.. In Intelligent
Systems for Molecular Biology (ISMB).

[16] A. P. Dawid and A. M. Skene. 1979. Maximum Likelihood Estimation of Observer Error-Rates Using the EM Algorithm. Journal of the Royal
Statistical Society C 28, 1 (1979), 20–28.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. In Meeting of the North American Association for Computational Linguistics (NAACL).

[18] Jared A Dunnmon, Alexander J Ratner, Khaled Saab, Nishith Khandwala, MatthewMarkert, Hersh Sagreiya, Roger Goldman, Christopher Lee-Messer,
Matthew P Lungren, Daniel L Rubin, et al. 2020. Cross-modal data programming enables rapid medical machine learning. Patterns 1, 2 (2020).

[19] Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhilasha Ravichander, Eduard Hovy, Hinrich Schütze, and Yoav Goldberg. 2021. Measuring and
improving consistency in pretrained language models. Transactions of the Association for Computational Linguistics 9 (2021), 1012–1031.

[20] Sabri Eyuboglu, Geoffrey Angus, Bhavik N Patel, Anuj Pareek, Guido Davidzon, Jin Long, Jared Dunnmon, and Matthew P Lungren. 2021. Multi-task
weak supervision enables anatomically-resolved abnormality detection in whole-body FDG-PET/CT. Nature communications 12, 1 (2021), 1–15.

[21] Jason A Fries, Ethan Steinberg, Saelig Khattar, Scott L Fleming, Jose Posada, Alison Callahan, and Nigam H Shah. 2021. Ontology-driven weak
supervision for clinical entity classification in electronic health records. Nature communications 12, 1 (2021), 1–11.

[22] Daniel Fu, Mayee Chen, Frederic Sala, Sarah Hooper, Kayvon Fatahalian, and Christopher Ré. 2020. Fast and three-rious: Speeding up weak
supervision with triplet methods. In International Conference on Machine Learning. PMLR, 3280–3291.

[23] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima, et al.
2020. The Pile: An 800GB Dataset of Diverse Text for Language Modeling. arXiv preprint arXiv:2101.00027 (2020).

[24] Raphael Gontijo-Lopes, Yann Dauphin, and Ekin Dogus Cubuk. 2022. No One Representation to Rule Them All: Overlapping Features of Training
Methods. In International Conference on Learning Representations. https://openreview.net/forum?id=BK-4qbGgIE3

[25] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. 2017. On Calibration of Modern Neural Networks. In ICML (Proceedings of Machine
Learning Research, Vol. 70). PMLR, 1321–1330.

[26] Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham Neubig. 2020. How Can We Know What Language Models Know? Transactions of the
Association for Computational Linguistics 8 (2020), 423–438. https://doi.org/10.1162/tacl_a_00324

[27] Giannis Karamanolakis, Subhabrata Mukherjee, Guoqing Zheng, and Ahmed Hassan Awadallah. 2021. Self-Training with Weak Supervision. In
Meeting of the North American Association for Computational Linguistics (NAACL).

[28] Zhaobin Kuang, Chidubem Arachie, Bangyong Liang, Pradyumna Narayana, Giulia DeSalvo, Michael Quinn, Bert Huang, Geoffrey Downs, and
Yang Yang. 2021. Firebolt: Weak Supervision Under Weaker Assumptions. In Artificial Intelligence and Statistics (AISTATS).

[29] Ludmila I Kuncheva and Christopher J Whitaker. 2003. Measures of diversity in classifier ensembles and their relationship with the ensemble
accuracy. Machine learning 51, 2 (2003), 181–207.

[30] Hunter Lang, Monica Agrawal, Yoon Kim, and David Sontag. 2022. Co-training Improves Prompt-based Learning for Large Language Models. arXiv
preprint arXiv:2202.00828 (2022).

[31] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. 2021. Pre-train, prompt, and predict: A systematic
survey of prompting methods in natural language processing. arXiv preprint arXiv:2107.13586 (2021).

[32] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2020.
Ro{BERT}a: A Robustly Optimized {BERT} Pretraining Approach. https://openreview.net/forum?id=SyxS0T4tvS

[33] A. Mazzetto, C. Cousins, D. Sam, S. H. Bach, and E. Upfal. 2021. Adversarial Multiclass Learning under Weak Supervision with Performance
Guarantees. In International Conference on Machine Learning (ICML).

[34] A. Mazzetto, D. Sam, A. Park, E. Upfal, and S. H. Bach. 2021. Semi-Supervised Aggregation of Dependent Weak Supervision Sources With
Performance Guarantees. In Artificial Intelligence and Statistics (AISTATS).

[35] M. Mintz, S. Bills, R. Snow, and D. Jurafsky. 2009. Distant supervision for relation extraction without labeled data. In Meeting of the Association for
Computational Linguistics (ACL).

[36] Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. 2022. Cross-Task Generalization via Natural Language Crowdsourcing
Instruction. In Meeting of the Association for Computational Linguistics (ACL).

[37] Laurel Orr. 2022. Manifest. https://github.com/HazyResearch/manifest.
[38] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex

Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan Leike, and
Ryan Lowe. 2022. Training language models to follow instructions with human feedback. CoRR abs/2203.02155 (2022).

[39] John Platt et al. 1999. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in large
margin classifiers 10, 3 (1999), 61–74.

[40] Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John Aslanides, Sarah Henderson, Roman Ring,
Susannah Young, et al. 2021. Scaling language models: Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446 (2021).

[41] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the Limits of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine Learning Research 21, 140 (2020), 1–67.

[42] A. J. Ratner, S. H. Bach, H. E. Ehrenberg, J. Fries, S. Wu, and C. Ré. 2020. Snorkel: Rapid Training Data Creation with Weak Supervision. The VLDB
Journal 29, 2 (2020), 709–730.

Manuscript submitted to ACM

https://openreview.net/forum?id=BK-4qbGgIE3
https://doi.org/10.1162/tacl_a_00324
https://openreview.net/forum?id=SyxS0T4tvS
https://github.com/HazyResearch/manifest

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Smith, Fries, Hancock, and Bach

[43] Alexander J Ratner, Christopher M De Sa, Sen Wu, Daniel Selsam, and Christopher Ré. 2016. Data Programming: Creating large training sets,
quickly. In Neural Information Processing Systems (NeurIPS).

[44] Alexander J Ratner, Braden Hancock, Jared Dunnmon, Frederic Sala, Shreyash Pandey, and Christopher Ré. 2019. Training Complex Models with
Multi-Task Weak Supervision. In AAAI Conference on Artificial Intelligence (AAAI).

[45] Esteban Safranchik, Shiying Luo, and Stephen H. Bach. 2020. Weakly Supervised Sequence Tagging from Noisy Rules. In AAAI Conference on
Artificial Intelligence (AAAI).

[46] Frederic Sala, Paroma Varma, Shiori Sagawa, Jason Fries, Daniel Fu, Saelig Khattar, Ashwini Ramamoorthy, Ke Xiao, Kayvon Fatahalian, James
Priest, et al. 2019. Multi-resolution weak supervision for sequential data. In Neural Information Processing Systems (NeurIPS.

[47] Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid Alyafeai, Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun
Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish Thakker, Shanya Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal Nayak,
Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden,
Thomas Wang, Trishala Neeraj, Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Fevry, Jason Alan Fries, Ryan Teehan, Stella Biderman, Leo
Gao, Tali Bers, Thomas Wolf, and Alexander M. Rush. 2022. Multitask Prompted Training Enables Zero-Shot Task Generalization. In International
Conference on Learning Representations (ICLR).

[48] Timo Schick and Hinrich Schütze. 2021. Generating Datasets with Pretrained Language Models. In Conference on Empirical Methods in Natural
Language Processing (EMNLP).

[49] Changho Shin, Winfred Li, Harit Vishwakarma, Nicholas Roberts, and Frederic Sala. 2022. Universalizing Weak Supervision. In International
Conference on Learning Representations (ICLR).

[50] Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer Singh. 2020. AutoPrompt: Eliciting knowledge from language models
with automatically generated prompts. In Conference on Empirical Methods in Natural Language Processing (EMNLP).

[51] Sahaana Suri, Raghuveer Chanda, Neslihan Bulut, Pradyumna Narayana, Yemao Zeng, Peter Bailis, Sugato Basu, Girija Narlikar, Christopher Ré, and
Abishek Sethi. 2020. Leveraging Organizational Resources to Adapt Models to New Data Modalities. Proc. VLDB Endow. 13, 12 (2020), 3396–3410.

[52] Paroma Varma, Bryan He, Dan Iter, Peng Xu, Rose Yu, Christopher De Sa, and Christopher Ré. 2016. Socratic learning: Augmenting generative
models to incorporate latent subsets in training data. arXiv preprint arXiv:1610.08123 (2016).

[53] Paroma Varma and Christopher Ré. 2018. Snuba: Automating weak supervision to label training data. Proceedings of the VLDB Endowment 12, 3
(2018), 223.

[54] Paroma Varma, Fred Sala, Ann He, Alex Ratner, and Christopher Ré. 2019. Learning Dependency Structures for Weak Supervision Models. In
International Conference on Machine Learning (ICML).

[55] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is
all you need. In Neural Information Processing Systems (NeurIPS).

[56] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, and Denny Zhou. 2022. Self-Consistency Improves Chain of Thought Reasoning in
Language Models. arXiv preprint arXiv:2203.11171 (2022).

[57] Albert Webson and Ellie Pavlick. 2021. Do Prompt-Based Models Really Understand the Meaning of their Prompts? arXiv preprint arXiv:2109.01247
(2021).

[58] Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M Dai, and Quoc V Le. 2022. Finetuned
language models are zero-shot learners. In International Conference on Learning Representations (ICLR).

[59] JasonWei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022. Chain of Thought Prompting Elicits Reasoning
in Large Language Models. arXiv preprint arXiv:2201.11903 (2022).

[60] Yuxiang Wu, Matt Gardner, Pontus Stenetorp, and Pradeep Dasigi. 2022. Generating Data to Mitigate Spurious Correlations in Natural Language
Inference Datasets. In Meeting of the Association for Computational Linguistics (ACL).

[61] Jiacheng Ye, Jiahui Gao, Qintong Li, Hang Xu, Jiangtao Feng, Zhiyong Wu, Tao Yu, and Lingpeng Kong. 2022. ZeroGen: Efficient Zero-shot Learning
via Dataset Generation. arXiv preprint arXiv:2202.07922 (2022).

[62] Peilin Yu and Stephen H. Bach. 2023. Alfred: A System for Prompted Weak Supervision. In Meeting of the Association for Computational Linguistics
(ACL) Demonstration.

[63] P. Yu, T. Ding, and S. H. Bach. 2022. Learning from Multiple Noisy Partial Labelers. In Artificial Intelligence and Statistics (AISTATS).
[64] Yue Yu, Simiao Zuo, Haoming Jiang, Wendi Ren, Tuo Zhao, and Chao Zhang. 2021. Fine-Tuning Pre-trained Language Model with Weak Supervision:

A Contrastive-Regularized Self-Training Approach. In Conference of the North American Chapter of the Association for Computational Linguistics
(NAACL).

[65] Eric Zelikman, Yuhuai Wu, and Noah D Goodman. 2022. STaR: Bootstrapping Reasoning With Reasoning. arXiv preprint arXiv:2203.14465 (2022).
[66] Jieyu Zhang, Cheng-Yu Hsieh, Yue Yu, Chao Zhang, and Alexander Ratner. 2022. A Survey on Programmatic Weak Supervision. arXiv preprint

arXiv:2202.05433 (2022).
[67] Jieyu Zhang, Bohan Wang, Xiangchen Song, Yujing Wang, Yaming Yang, Jing Bai, and Alexander Ratner. 2022. Creating Training Sets via Weak

Indirect Supervision. In International Conference on Learning Representations (ICLR).
[68] Jieyu Zhang, Yue Yu, Yinghao Li, Yujing Wang, Yaming Yang, Mao Yang, and Alexander Ratner. 2021. WRENCH: A Comprehensive Benchmark

for Weak Supervision. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2). https:
//openreview.net/forum?id=Q9SKS5k8io

Manuscript submitted to ACM

https://openreview.net/forum?id=Q9SKS5k8io
https://openreview.net/forum?id=Q9SKS5k8io

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

Language Models in the Loop: Incorporating Prompting into Weak Supervision 19

[69] Rongzhi Zhang, Yue Yu, Pranav Shetty, Le Song, and Chao Zhang. 2022. PRBoost: Prompt-Based Rule Discovery and Boosting for Interactive
Weakly-Supervised Learning. In Meeting of the Association for Computational Linguistics (ACL).

[70] Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. 2021. Calibrate Before Use: Improving Few-shot Performance of Language
Models. In ICML (Proceedings of Machine Learning Research, Vol. 139). PMLR, 12697–12706.

Manuscript submitted to ACM

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Smith, Fries, Hancock, and Bach

6 APPENDIX

6.1 GPT-3 API Costs

InstructGPT Language Models

Dataset Supervision #Queries Ada Babbage Curie DaVinci

YouTube Zero Shot 1,586 $0.04 $0.06 $0.28 $2.76
YouTube Prompted WS 10,586 $0.43 $0.65 $3.24 $32.40

SMS Zero Shot 4,571 $0.11 $0.16 $0.82 $8.24
SMS Prompted WS 333,683 $9.72 $14.59 $72.93 $729.31

Spouse Zero Shot 22,254 $1.52 $2.28 $11.40 $113.97
Spouse Prompted WS 200,286 $16.02 $24.03 $120.16 $1,201.62

Table 5. OpenAI API estimated query costs for labeling WRENCH training sets with InstructGPT family of language models. See
https://openai.com/api/pricing/ (accessed 03/01/2022).

Table 5 shows the estimated query costs for labeling WRENCH training sets with the InstructGPT family of language
models at the time the API was accessed. It also shows the number of queries required, comparing zero-shot querying
and prompted weak supervision. The time cost can become substantial compared with traditional labeling functions
when each query takes a second or two. Avoiding unnecessary queries and optimizing throughput become critical
when querying language models at scale. Systems like Manifest [37] and Alfred [62] can help with these challenges.

6.2 Zero Shot Prompt Baseline

6.2.1 End Model Generalization. Table 6 contains performance of Zero Shot (ZS) prompts directly evaluated on test
data compared to the same prompts used for prompted weak supervision, where we programmatically label the training
split, train a RoBERTa end model, and evaluate on test data (ZS+End Model). All prompts are contextually calibrated.
The RoBERTa end model provides consistent improvements.

Youtube (Accuracy) SMS (F1) Spouse (F1)

ZS ZS+End Model ZS ZS+End Model ZS ZS+End Model

T0++ 55.6 (0.0) 58.7 (2.4) 34.0 (0.0) 83.2 (2.4) 63.0 (0.0) 41.5 (13.1)
Curie 54.4 (0.0) 52.8 (0.0) 0.0 (0.0) 0.0 (0.0) 38.3 (0.0) 49.6 (1.0)
Babbage 55.6 (0.0) 78.5 (3.0) 20.6 (0.0) 32.2 (3.0) 26.9 (0.0) 40.9 (0.9)
Ada 44.8 (0.0) 51.7 (2.4) 25.1 (0.0) 26.3 (2.6) 17.2 (0.0) 19.1 (0.8)

Table 6. Comparing the Zero Shot (ZS) prompt as a direct classification model for test data versus the same prompt when used as a
labeler to programmatically generate training data for a RoBERTa model (ZS+End Model). The best performing prompt performances
are in bold.

6.2.2 Zero Shot Labeling Function. Table 7 contains results for prompted weak supervision models that add the Zero
Shot prompt as an additional labeling function. Performance benefits were mixed, with models generally negatively
impacted by incorporating the Zero Shot labeler. Here T0++ had an average improvement of 0.2 F1 points, while
InstructGPT Curie and Babbage has an average drop of 2.8 and 0.8 F1 points respectively. InstructGPT Ada improved by
2.6 F1 points on average.
Manuscript submitted to ACM

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Language Models in the Loop: Incorporating Prompting into Weak Supervision 21

Dataset Prompts Language Model Precision Recall F1 Accuracy

YouTube PWS+ZS T0++ 92.3 (0.5) 90.8 (0.9) 91.0 (0.8) 91.2 (0.8)
YouTube PWS T0++ 92.6 (0.5) 91.7 (0.5) 91.9 (0.5) 92.0 (0.5)

SMS PWS+ZS T0++ 96.5 (0.8) 92.8 (1.4) 94.5 (0.4) 98.6 (0.1)
SMS PWS T0++ 95.9 (2.5) 88.1 (1.1) 91.8 (1.6) 97.9 (0.4)

Spouse PWS+ZS T0++ 52.6 (1.0) 75.4 (2.4) 61.8 (0.8) 92.5 (0.2)
Spouse PWS T0++ 54.2 (1.8) 75.4 (1.2) 62.9 (0.8) 92.8 (0.3)

YouTube PWS+ZS InstructGPT Curie 80.5 (1.1) 70.5 (1.1) 68.9 (1.4) 72.0 (1.0)
YouTube PWS InstructGPT Curie 80.1 (1.0) 77.1 (2.1) 76.7 (2.3) 77.7 (1.9)

SMS PWS+ZS InstructGPT Curie 53.4 (5.8) 80.6 (2.9) 63.0 (4.9) 86.0 (3.7)
SMS PWS InstructGPT Curie 60.6 (11.5) 83.8 (4.4) 65.7 (5.8) 86.2 (3.9)

Spouse PWS+ZS InstructGPT Curie 35.6 (2.2) 58.9 (5.6) 43.2 (0.8) 87.5 (1.2)
Spouse PWS InstructGPT Curie 29.5 (0.9) 67.5 (2.0) 41.0 (0.9) 84.3 (0.7)

YouTube PWS+ZS InstructGPT Babbage 83.7 (0.6) 83.0 (0.7) 83.0 (0.6) 83.1 (0.6)
YouTube PWS InstructGPT Babbage 85.8 (1.2) 84.8 (1.4) 84.9 (1.4) 85.1 (1.3)

SMS PWS+ZS InstructGPT Babbage 13.4 (0.0) 100.0 (0.0) 23.6 (0.0) 13.4 (0.0)
SMS PWS InstructGPT Babbage 13.4 (0.0) 100.0 (0.0) 23.6 (0.0) 13.4 (0.0)

Spouse PWS+ZS InstructGPT Babbage 25.0 (2.7) 59.5 (4.0) 34.3 (2.2) 80.9 (2.4)
Spouse PWS InstructGPT Babbage 24.2 (2.2) 67.7 (5.6) 34.9 (1.7) 79.3 (1.9)

YouTube PWS+ZS InstructGPT Ada 54.0 (9.5) 50.6 (0.3) 36.0 (0.7) 53.3 (0.3)
YouTube PWS InstructGPT Ada 34.8 (8.4) 50.1 (0.1) 34.7 (0.2) 52.9 (0.1)

SMS PWS+ZS InstructGPT Ada 13.4 (0.0) 100.0 (0.0) 23.6 (0.0) 13.4 (0.0)
SMS PWS InstructGPT Ada 16.6 (1.3) 99.5 (0.5) 28.3 (1.8) 30.4 (6.2)

Spouse PWS+ZS InstructGPT Ada 20.0 (0.4) 53.1 (1.7) 29.0 (0.3) 79.0 (0.8)
Spouse PWS InstructGPT Ada 16.8 (5.6) 20.6 (8.1) 17.7 (6.2) 88.7 (1.4)

Table 7. Incorporating the Zero Shot prompt as an additional labeling function in Prompted Weak Superision.

6.3 Prompt Calibration

We find calibration improves performance of prompted labeling functions, with the largest gains found in settings
where uncalibrated prompts display pathological performance. We observed that the InstructGPT family of language
models performed very poorly in many zero shot and prompted weak supervision experiments, as shown in Table 8.
The performance benefits of contextual calibration for all language models and datasets are outlined for the Zero Shot
baseline in Table 9 and for prompted weak supervision in Table 10.

Figures 7 and 8 show accuracy vs. coverage for calibrated and uncalibrated labeling functions on YouTube and
Spouse, respectively. Figures 9 and 10 show the class conditional view of calibration changes vs. accuracy changes for
all datasets and language models. Note that for T0++, prompts labeling the negative class have little-to-no change in
accuracy after calibration.

6.4 WRENCH Labeling Function Prompts

The complete set of translated WRENCH labeling functions are show in Tables 11, 12, and 13.
Manuscript submitted to ACM

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Smith, Fries, Hancock, and Bach

YouTube (Accuracy) SMS (F1) Spouse (F1)

Zero Shot Prompted WS Zero Shot Prompted WS Zero Shot Prompted WS

WRENCH Benchmark - 94.9 (0.5) - 92.4 (0.5) - 37.9 (2.8)

T0++ 54.1 (0.6) 95.4 (0.4) 84.1 (1.7) 91.4 (1.6) 60.6 (0.8) 44.9 (1.3)
InstructGPT Curie 52.8 (0.0) 77.7 (1.1) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
InstructGPT Babbage 52.8 (0.0) 69.2 (3.0) 0.0 (0.0) 40.5 (10.3) 33.8 (7.2) 0.0 (0.0)
InstructGPT Ada 52.8 (0.0) 67.3 (1.2) 0.0 (0.0) 94.7 (0.5) 26.1 (1.2) 0.0 (0.0)

Table 8. The same performance metrics presented in Table 3 but with uncalibrated prompts.

Dataset Language Model CC Precision Recall F1 ±F1 Acc. ±Acc.

YouTube T0++ ✓ 61.5 (7.3) 56.5 (2.6) 48.0 (4.9) +10.5 (5.0) 58.7 (2.4) +4.7 (2.4)
50.6 (10.9) 51.3 (0.6) 37.5 (1.3) – 54.1 (0.6) –

SMS T0++ ✓ 77.5 (3.9) 90.3 (1.1) 83.2 (2.4) -0.9 (2.1) 95.0 (0.8) -0.5 (0.7)
82.4 (4.5) 88.1 (4.3) 84.1 (1.7) – 95.5 (0.5) –

Spouse T0++ ✓ 37.3 (11.8) 46.7 (14.8) 41.5 (13.1) -19.1 (13.6) 92.7 (0.3) +0.1 (0.7)
54.3 (2.2) 69.7 (3.1) 60.6 (0.8) – 92.6 (0.5) –

YouTube InstructGPT Curie ✓ 26.4 (0.0) 50.0 (0.0) 34.6 (0.0) 0.0 (0.0) 52.8 (0.0) 0.0 (0.0)
26.4 (0.0) 50.0 (0.0) 34.6 (0.0) – 52.8 (0.0) –

SMS InstructGPT Curie ✓ 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 86.6 (0.0) 0.0 (0.0)
0.0 (0.0) 0.0 (0.0) 0.0 (0.0) – 86.6 (0.0) –

Spouse InstructGPT Curie ✓ 37.9 (1.8) 74.5 (4.8) 49.6 (1.0) +49.6 (1.0) 87.7 (1.0) -4.2 (1.0)
0.0 (0.0) 0.0 (0.0) 0.0 (0.0) – 91.9 (0.0) –

YouTube InstructGPT Babbage ✓ 81.4 (2.2) 77.6 (3.2) 77.2 (3.7) +42.6 (3.7) 78.5 (3.0) +25.7 (3.0)
26.4 (0.0) 50.0 (0.0) 34.6 (0.0) – 52.8 (0.0) –

SMS InstructGPT Babbage ✓ 20.8 (2.7) 79.4 (5.4) 32.2 (3.0) +32.2 (3.0) 52.0 (8.0) -34.6 (8.0)
0.0 (0.0) 0.0 (0.0) 0.0 (0.0) – 86.6 (0.0) –

Spouse InstructGPT Babbage ✓ 28.5 (1.1) 75.3 (6.0) 40.9 (0.9) +7.1 (7.1) 82.5 (1.3) -6.1 (0.6)
28.1 (5.8) 43.7 (10.0) 33.8 (7.2) – 88.5 (0.8) –

YouTube InstructGPT Ada ✓ 40.6 (7.7) 53.4 (1.9) 43.4 (5.3) +8.9 (5.3) 51.7 (2.4) -1.1 (2.4)
26.4 (0.0) 50.0 (0.0) 34.6 (0.0) – 52.8 (0.0) –

SMS InstructGPT Ada ✓ 15.3 (1.9) 99.8 (0.2) 26.3 (2.6) +26.3 (2.6) 21.1 (7.7) -65.5 (7.7)
0.0 (0.0) 0.0 (0.0) 0.0 (0.0) – 86.6 (0.0) –

Spouse InstructGPT Ada ✓ 10.6 (0.5) 97.9 (0.6) 19.1 (0.8) -7.0 (1.7) 32.2 (3.9) -23.2 (5.8)
15.1 (0.8) 96.1 (0.9) 26.1 (1.2) – 55.4 (2.9) –

Table 9. Performance impact of contextual calibration (CC) on all Zero Shot baseline models. Scores are the mean/standard error of 6
training replicates. Overall improvements due to calibration are in bold.

6.5 Labeling Function Diversity

Figure 11 shows a heatmap view of diversity metrics for the original WRENCH labeling functions. Figures 12 and 13
show diversity measures for the SMS and Spouse datasets respectively.

Manuscript submitted to ACM

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

Language Models in the Loop: Incorporating Prompting into Weak Supervision 23

Dataset Language Model CC Precision Recall F1 ±F1 Acc. ±Acc.
YouTube T0++ ✓ 92.6 (0.5) 91.7 (0.5) 91.9 (0.5) -3.5 (0.6) 92.0 (0.5) -3.4 (0.6)
YouTube T0++ 95.7 (0.4) 95.2 (0.5) 95.4 (0.4) – 95.4 (0.4) –

SMS T0++ ✓ 95.9 (2.5) 88.1 (1.1) 91.8 (1.6) +0.3 (2.5) 97.9 (0.4) +0.2 (0.7)
SMS T0++ 91.6 (3.2) 91.5 (0.8) 91.4 (1.6) – 97.7 (0.5) –

Spouse T0++ ✓ 54.2 (1.8) 75.4 (1.2) 62.9 (0.8) +18.0 (1.7) 92.8 (0.3) +10.0 (1.4)
Spouse T0++ 30.7 (1.6) 86.0 (2.8) 44.9 (1.3) – 82.8 (1.2) –

YouTube InstructGPT Curie ✓ 80.1 (1.0) 77.1 (2.1) 76.7 (2.3) +0.8 (2.0) 77.7 (1.9) -0.1 (1.6)
YouTube InstructGPT Curie 84.8 (0.6) 76.4 (1.2) 75.9 (1.3) – 77.7 (1.1) –

SMS InstructGPT Curie ✓ 60.6 (11.5) 83.8 (4.4) 65.7 (5.8) +65.7 (5.8) 86.2 (3.9) -0.4 (3.9)
SMS InstructGPT Curie 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) – 86.6 (0.0) –

Spouse InstructGPT Curie ✓ 29.5 (0.9) 67.5 (2.0) 41.0 (0.9) +41.0 (0.9) 84.3 (0.7) -7.7 (0.7)
Spouse InstructGPT Curie 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) – 91.9 (0.0) –

YouTube InstructGPT Babbage ✓ 85.8 (1.2) 84.8 (1.4) 84.9 (1.4) +18.2 (4.3) 85.1 (1.3) +15.9 (3.6)
YouTube InstructGPT Babbage 74.2 (3.4) 68.2 (3.0) 66.7 (3.5) – 69.2 (3.0) –

SMS InstructGPT Babbage ✓ 13.4 (0.0) 100.0 (0.0) 23.6 (0.0) -16.9 (10.3) 13.4 (0.0) -72.1 (2.4)
SMS InstructGPT Babbage 48.9 (12.2) 48.5 (15.1) 40.5 (10.3) – 85.5 (2.4) –

Spouse InstructGPT Babbage ✓ 24.2 (2.2) 67.7 (5.6) 34.9 (1.7) +34.9 (1.7) 79.3 (1.9) -12.6 (1.9)
Spouse InstructGPT Babbage 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) – 91.9 (0.0) –

YouTube InstructGPT Ada ✓ 34.8 (8.4) 50.1 (0.1) 34.7 (0.2) -27.6 (1.9) 52.9 (0.1) -14.4 (1.2)
YouTube InstructGPT Ada 77.5 (1.4) 65.5 (1.3) 62.3 (1.9) – 67.3 (1.2) –

SMS InstructGPT Ada ✓ 16.6 (1.3) 99.5 (0.5) 28.3 (1.8) -66.4 (1.9) 30.4 (6.2) -68.2 (6.2)
SMS InstructGPT Ada 98.7 (0.7) 91.0 (0.8) 94.7 (0.5) – 98.6 (0.1) –

Spouse InstructGPT Ada ✓ 16.8 (5.6) 20.6 (8.1) 17.7 (6.2) +17.7 (6.2) 88.7 (1.4) -3.3 (1.4)
Spouse InstructGPT Ada 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) – 91.9 (0.0) –

Table 10. Performance impact of contextual calibration (CC) on all Prompted Weak Supervision models. Scores are the mean/standard
error of 6 training replicates. Overall improvements due to calibration are in bold.

Manuscript submitted to ACM

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Smith, Fries, Hancock, and Bach

Model Prompt Template Label

T0++

Does the following comment reference the speaker’s channel or video?\n\n[TEXT] SPAM
Does the following comment ask you to subscribe to a channel?\n\n[TEXT] SPAM
Does the following comment have a URL?\n\n[TEXT] SPAM
Does the following comment ask the reader to do something?\n\n[TEXT] SPAM
Does the following comment talk about a song?\n\n[TEXT] HAM
Does the following comment contain the words "check out"? \n\n[TEXT] SPAM
Is the following comment fewer than 5 words?\n\n[TEXT] HAM
Does the following comment mention a person’s name?\n\n[TEXT] HAM
Does the following comment express a very strong sentiment?\n\n[TEXT] HAM
Does the following comment express a subjective opinion?\n\n[TEXT] HAM

GPT-3

Q: Does the following comment "[TEXT]" reference the speaker’s channel or
video?\nA:

SPAM

Q: Does the following comment "[TEXT]" ask you to subscribe to a channel?\nA: SPAM
Q: Does the following comment "[TEXT]" have a URL?\nA: SPAM
Q: Does the following comment "[TEXT]" ask the reader to do something?\nA: SPAM
Q: Does the following comment "[TEXT]" talk about a song?\nA: HAM
Q: Does the following comment "[TEXT]" contain the words "check out"?\nA: SPAM
Q: Is the following comment "[TEXT]" fewer than 5 words?\nA: HAM
Q: Does the following comment "[TEXT]" mention a person’s name?\nA: HAM
Q: Does the following comment "[TEXT]" express a very strong sentiment?\nA: HAM
Q: Does the following comment "[TEXT]" express a subjective opinion?\nA: HAM

Table 11. YouTube labeling function prompts with class labels HAM = 0, SPAM = 1. A label map transforms text completions to class
labels, where "yes" emits the value denoted in the label column and "no" emits ABSTAIN.

Model Prompt Template Label

T0++ Does the following text message contain the words "[KEYWORDS]"?\n\n[TEXT]

GPT-3 Q: Does the following text message "[TEXT]" contain the words "[KEYWORDS]"?\nA:

[KEYWORDS]

??1.50, ??500, ??5000, call for offer, cash prize, chat date, chat to, childporn, credits, dating call, direct,
expires now, fantasies call, free phones, free price, free ringtones, free sex, free tone, guaranteed free,
guaranteed gift, hard live girl, important lucky, inviting friends, latest, latest offer, message call,
new mobiles, no extra, password, please call, sms reply, unlimited calls, urgent award guaranteed,
urgent prize, voucher claim, welcome reply, win shopping, winner reward, won call, won cash, won
cash prize, won claim

SPAM

I, I can did, I it, I miss, I used to, adventuring, amrita, can’t talk, did u got, do you, fb, goodo, hee
hee, i’ll, jus, link, maggi, mine, my kids, noisy, praying, shit, should I, thanks, that’s fine, thats
nice, u how 2, we will, where are, wtf, your I

HAM

Table 12. SMS Labeling function prompts with class labels HAM = 0, SPAM = 1 that are defined by individual [KEYWORDS]. A label map
transforms text completions to class labels, where "yes" emits the value denoted in the label column and "no" emits ABSTAIN.

Manuscript submitted to ACM

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

Language Models in the Loop: Incorporating Prompting into Weak Supervision 25

Model Prompt Template Label

T0++

Context: [TEXT]\n\nIs there any mention of "spouse" between the entities
[PERSON1] and [PERSON2]?

SPOUSE

Context: [TEXT]\n\nIs there any mention of "spouse" before the entity
[PERSON1]?

SPOUSE

Context: [TEXT]\n\nIs there any mention of "spouse" before the entity
[PERSON2]?

SPOUSE

Context: [TEXT]\n\nDo [PERSON1] and [PERSON2] have the same last name? SPOUSE
Context: [TEXT]\n\nDid [PERSON1] and [PERSON2] get married? SPOUSE
Context: [TEXT]\n\nAre [PERSON1] and [PERSON2] family members? NOT_SPOUSE
Context: [TEXT]\n\nIs [PERSON1] said to be a family member? NOT_SPOUSE
Context: [TEXT]\n\nIs [PERSON2] said to be a family member? NOT_SPOUSE
Context: [TEXT]\n\nAre [PERSON1] and [PERSON2] dating? NOT_SPOUSE
Context: [TEXT]\n\nAre [PERSON1] and [PERSON2] co-workers? NOT_SPOUSE
Are [PERSON1] and [PERSON2] married? SPOUSE

GPT-3

Context: "[TEXT]"\nQ: Is there any mention of "spouse" between the entities
[PERSON1] and [PERSON2]?\nA:

SPOUSE

Context: "[TEXT]"\nQ: Is there any mention of "spouse" before the entity
[PERSON1]?\nA:

SPOUSE

Context: "[TEXT]"\nQ: Is there any mention of "spouse" before the entity
[PERSON2]?\nA:

SPOUSE

Context: "[TEXT]"\nQ: Do [PERSON1] and [PERSON2] have the same last name?\nA: SPOUSE
Context: "[TEXT]"\nQ: Did [PERSON1] and [PERSON2] get married?\nA: SPOUSE
Context: "[TEXT]"\nQ: Are [PERSON1] and [PERSON2] family members?\nA: NOT_SPOUSE
Context: "[TEXT]"\nQ: Is [PERSON1] said to be a family member?\nA: NOT_SPOUSE
Context: "[TEXT]"\nQ: Is [PERSON2] said to be a family member?\nA: NOT_SPOUSE
Context: "[TEXT]"\nQ: Are [PERSON1] and [PERSON2] dating?\nA: NOT_SPOUSE
Context: "[TEXT]"\nQ: Are [PERSON1] and [PERSON2] co-workers?\nA: NOT_SPOUSE
Q: Are [PERSON1] and [PERSON2] married?\nA: SPOUSE

Table 13. Spouse labeling function prompts with class labels NOT_SPOUSE = 0, SPOUSE = 1. A label map transforms text completions to
class labels, where "yes" emits the value denoted in the label column and "no" emits ABSTAIN.

Manuscript submitted to ACM

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

26 Smith, Fries, Hancock, and Bach

0% 25% 50% 75% 100%

0%

25%

50%

75%

100%
A

cc
ur

ac
y

0% 25% 50% 75% 100% 0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

Class Label
HAM
SPAM

Labeler
WRENCH Benchmark
T0++
InstructGPT Curie
InstructGPT Babbage
InstructGPT Ada

Coverage (Percentage of Training Set)

Calibrated Labeling Function Prompts (YouTube)

0% 25% 50% 75% 100%

0%

25%

50%

75%

100%

A
cc

ur
ac

y

0% 25% 50% 75% 100% 0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

Class Label
HAM
SPAM

Labeler
WRENCH Benchmark
T0++
InstructGPT Curie
InstructGPT Babbage
InstructGPT Ada

Coverage (Percentage of Training Set)

Uncalibrated Labeling Function Prompts (YouTube)

Fig. 7. YouTube prompted labeling function accuracy vs. coverage scatter plots. The top figure is calibrated using contextual calibration
and the bottom is uncalibrated. Colors correspond to the language models used for labeling and marker style indicates class label.

0% 25% 50% 75% 100%

0%

25%

50%

75%

100%

A
cc

ur
ac

y

0% 25% 50% 75% 100% 0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

Class Label
NOT SPOUSE
SPOUSE

Labeler
WRENCH Benchmark
T0++
InstructGPT Curie
InstructGPT Babbage
InstructGPT Ada

Coverage (Percentage of Training Set)

Calibrated Labeling Function Prompts (Spouse)

0% 25% 50% 75% 100%

0%

25%

50%

75%

100%

A
cc

ur
ac

y

0% 25% 50% 75% 100% 0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

Class Label
NOT SPOUSE
SPOUSE

Labeler
WRENCH Benchmark
T0++
InstructGPT Curie
InstructGPT Babbage
InstructGPT Ada

Coverage (Percentage of Training Set)

Uncalibrated Labeling Function Prompts (Spouse)

Fig. 8. Spouse prompted labeling function accuracy vs. coverage scatter plots. The top figure is calibrated using contextual calibration
and the bottom is uncalibrated. Colors correspond to the language models used for labeling and marker style indicates class label.

Manuscript submitted to ACM

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

Language Models in the Loop: Incorporating Prompting into Weak Supervision 27

-100% -50% 0% +50% +100%
 Coverage

-100%

-50%

0%

+50%

+100%

 A
cc

ur
ac

y

-100% -50% 0% +50% +100%
 Coverage

-100% -50% 0% +50% +100%
 Coverage

-100%

-50%

0%

+50%

+100%

 A
cc

ur
ac

y

-100% -50% 0% +50% +100%
 Coverage

Labeler
T0++
InstructGPT Curie
InstructGPT Babbage
InstructGPT Ada

Labeler
T0++
InstructGPT Curie
InstructGPT Babbage
InstructGPT Ada

Labeler
T0++
InstructGPT Curie
InstructGPT Babbage
InstructGPT Ada

Labeler
T0++
InstructGPT Curie
InstructGPT Babbage
InstructGPT Ada

Class Label
Negative

Contextual Calibration: Impact on Accuracy and Coverage

Fig. 9. Accuracy and coverage changes as a result of contextual calibration, broken down by the negative class label.

Manuscript submitted to ACM

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

28 Smith, Fries, Hancock, and Bach

-100% -50% 0% +50% +100%
 Coverage

-100%

-50%

0%

+50%

+100%
 A

cc
ur

ac
y

-100% -50% 0% +50% +100%
 Coverage

-100% -50% 0% +50% +100%
 Coverage

-100%

-50%

0%

+50%

+100%

 A
cc

ur
ac

y

-100% -50% 0% +50% +100%
 Coverage

Labeler
T0++
InstructGPT Curie
InstructGPT Babbage
InstructGPT Ada

Labeler
T0++
InstructGPT Curie
InstructGPT Babbage
InstructGPT Ada

Labeler
T0++
InstructGPT Curie
InstructGPT Babbage
InstructGPT Ada

Labeler
T0++
InstructGPT Curie
InstructGPT Babbage
InstructGPT Ada

Class Label
Negative
Positive

Contextual Calibration: Impact on Accuracy and Coverage

Fig. 10. Accuracy and coverage changes as a result of contextual calibration, broken down by the positive class label.

Manuscript submitted to ACM

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Language Models in the Loop: Incorporating Prompting into Weak Supervision 29

HAM SPAM

HAM

SPAM

W
R

E
N

C
H

 (Y
ou

Tu
be

)

Disagreement

HAM SPAM

HAM

SPAM

Double Fault

HAM SPAM

HAM

SPAM

Double Correct

0% 1% 2.0% 0% 1% 2.0% 0% 1% 2.0%

HAM SPAM

HAM

SPAM

W
R

E
N

C
H

 (S
M

S
)

Disagreement

HAM SPAM

HAM

SPAM

Double Fault

HAM SPAM

HAM

SPAM

Double Correct

0% 1% 2.0% 0% 1% 2.0% 0% 1% 2.0%

NOT SPOUSE SPOUSE

NOT SPOUSE

SPOUSE

W
R

E
N

C
H

 (S
po

us
e)

Disagreement

NOT SPOUSE SPOUSE

NOT SPOUSE

SPOUSE

Double Fault

NOT SPOUSE SPOUSE

NOT SPOUSE

SPOUSE

Double Correct

0% 1% 2.0% 0% 1% 2.0% 0% 1% 2.0%

Fig. 11. Diversity measures for the WRENCH Benchmark labeling function set. Here rules have very low coverage (i.e., rules typically
vote on less that 2% of the training set) but have high precision. SMS and Spouse have very low overall disagreement levels. YouTube
has higher disagreement, but only limited cases where both labeling functions make correlated errors (double fault).

Manuscript submitted to ACM

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

30 Smith, Fries, Hancock, and Bach

HAM SPAM

HAM

SPAMT0
++

 (S
M

S
)

Disagreement

HAM SPAM

HAM

SPAM

Double Fault

HAM SPAM

HAM

SPAM

Double Correct

0% 25% 50% 0% 25% 50% 0% 25% 50%

HAM SPAM

HAM

SPAM

In
st

ru
ct

G
P

T
C

ur
ie

 (S
M

S
)

Disagreement

HAM SPAM

HAM

SPAM

Double Fault

HAM SPAM

HAM

SPAM

Double Correct

0% 25% 50% 0% 25% 50% 0% 25% 50%

HAM SPAM

HAM

SPAM

In
st

ru
ct

G
P

T
B

ab
ba

ge
 (S

M
S

)

Disagreement

HAM SPAM

HAM

SPAM

Double Fault

HAM SPAM

HAM

SPAM

Double Correct

0% 25% 50% 0% 25% 50% 0% 25% 50%

HAM SPAM

HAM

SPAM

In
st

ru
ct

G
P

T
A

da
 (S

M
S

)

Disagreement

HAM SPAM

HAM

SPAM

Double Fault

HAM SPAM

HAM

SPAM

Double Correct

0% 25% 50% 0% 25% 50% 0% 25% 50%

Fig. 12. SMS prompted labeling function diversity measures. Color intensity represents the percentage of training examples labeled
by a pair of prompts.

Manuscript submitted to ACM

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

Language Models in the Loop: Incorporating Prompting into Weak Supervision 31

NOT SPOUSE SPOUSE

NOT SPOUSE

SPOUSET0
++

 (S
po

us
e)

Disagreement

NOT SPOUSE SPOUSE

NOT SPOUSE

SPOUSE

Double Fault

NOT SPOUSE SPOUSE

NOT SPOUSE

SPOUSE

Double Correct

0% 25% 50% 0% 25% 50% 0% 25% 50%

NOT SPOUSE SPOUSE

NOT SPOUSE

SPOUSE

In
st

ru
ct

G
P

T
C

ur
ie

 (S
po

us
e)

Disagreement

NOT SPOUSE SPOUSE

NOT SPOUSE

SPOUSE

Double Fault

NOT SPOUSE SPOUSE

NOT SPOUSE

SPOUSE

Double Correct

0% 25% 50% 0% 25% 50% 0% 25% 50%

NOT SPOUSE SPOUSE

NOT SPOUSE

SPOUSE

In
st

ru
ct

G
P

T
B

ab
ba

ge
 (S

po
us

e)

Disagreement

NOT SPOUSE SPOUSE

NOT SPOUSE

SPOUSE

Double Fault

NOT SPOUSE SPOUSE

NOT SPOUSE

SPOUSE

Double Correct

0% 25% 50% 0% 25% 50% 0% 25% 50%

NOT SPOUSE SPOUSE

NOT SPOUSE

SPOUSE

In
st

ru
ct

G
P

T
A

da
 (S

po
us

e)

Disagreement

NOT SPOUSE SPOUSE

NOT SPOUSE

SPOUSE

Double Fault

NOT SPOUSE SPOUSE

NOT SPOUSE

SPOUSE

Double Correct

0% 25% 50% 0% 25% 50% 0% 25% 50%

Fig. 13. Spouse prompted labeling function diversity measures. Color intensity represents the percentage of training examples labeled
by a pair of prompts.

Manuscript submitted to ACM

	Abstract
	1 Introduction
	2 Related Work
	2.1 Weakly Supervised Machine Learning
	2.2 Language Models and Prompting

	3 Weak Supervision via Prompting
	3.1 Workflow
	3.2 Developing Prompted Labeling Functions
	3.3 Calibration

	4 Experimental Study
	4.1 Datasets
	4.2 Translating WRENCH Labeling Functions into Prompts
	4.3 Comparing Programmatic Labelers
	4.4 Large Language Models
	4.5 Evaluation Metrics
	4.6 Results

	5 Discussion and Conclusion
	Acknowledgments
	References
	6 Appendix
	6.1 GPT-3 API Costs
	6.2 Zero Shot Prompt Baseline
	6.3 Prompt Calibration
	6.4 WRENCH Labeling Function Prompts
	6.5 Labeling Function Diversity

