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Principal Component Networks: Utilizing Low-Rank
Activation Structure to Reduce Parameters Early in Training

ROGER WALEFFE∗, University of Wisconsin-Madison, USA
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Recentworks show that overparameterized neural networks contain small subnetworks that exhibit comparable
accuracy to the full model when trained in isolation. These results highlight the potential to reduce the
computational costs of deep neural network training without sacrificing generalization performance. Initial
approaches for finding these small networks relied on expensive multi-round train-and-prune procedures,
limiting their practical potential, but more recent work identifies subnetworks using structured pruning
techniques early in training. In this paper, we study network activations, rather than network weights, and
find that hidden layer activations in overparameterized networks exist primarily in subspaces smaller than
the actual model width. We further notice that these subspaces can be identified early in training. Based on
these observations, we show how to efficiently find small networks that exhibit similar accuracy to their
overparameterized counterparts after only a few training epochs. We term these network architectures
Principal Component Networks (PCNs). PCNs compress individual layers by retaining only the high variance
linear combinations of channels—defined by the principal components of the layer inputs—a key difference
from structured pruning techniques which focus on individual channel pruning using localized channel
measurements. We evaluate PCNs on CIFAR-10 and ImageNet for VGG and ResNet style architectures and
compare against existing methods for subnetwork identification during early training. We find that PCNs
consistently reduce parameter counts with little accuracy loss, thus providing the potential to reduce the
computational costs of deep neural network training. Beyond model compression, we also connect our
observation regarding hidden layer activations to the feature representations learned by neural networks and
discuss areas for future work.
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Additional Key Words and Phrases: model pruning, compression, activations, sparsity, resource-efficient
training
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1 INTRODUCTION
Recent results suggest the importance of overparameterization in neural networks [17, 39]. The
theoretical results of Gunasekar et al. [17] demonstrate that training in an overparameterized
regime leads to an implicit regularization that may improve generalization. At the same time,
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empirical results [39] show that large models can lead to higher test accuracy. Yet, these gen-
eralization improvements come with increased time and resource utilization costs: models with
more parameters generally require more FLOPS. The question then arises, how can we retain the
generalization benefits of overparameterized training but reduce its computational cost?
This question has lead to several works which show that overparameterized networks contain

subnetworks with comparable generalization performance [3, 11, 47, 59]. Many of these works
target efficient inference by pruning the weights of a fully trained network [3]. More recent
works, however, show that overparameterized networks contain subnetworks that can be trained in
isolation to the same (or nearly the same) generalization performance as compared to training the full
model [11, 47, 59]. These results highlight the potential to reduce the training costs of high-accuracy
networks. Early approaches for finding these subnetworks relied on multi-round train-and-prune
procedures to periodically remove low-magnitude weights [11, 12]. While these methods result in
subnetworks capable of training to accuracy matching the original overparameterized network
(the lottery ticket hypothesis), they face two main challenges limiting their practical potential for
end-to-end training cost reductions: 1) iterative train-prune-reset procedures are computationally
expensive (they require paying the full training cost of the original model each iteration) and 2)
individual weight pruning leads to sparse architectures that are hard to execute efficiently on
modern hardware; in fact, individual weight pruning is generally implemented by multiplying
weight matrices with an additional binary mask matrix, thus actually adding computation rather
than reducing it. As such, follow up work identifies subnetworks using one-shot structured pruning
techniques early in training [59]. These methods produce dense architectures that are hardware
friendly, but rely on channel pruning using individual channel measurements. Such localized
heuristics assume strong independence between channels in each network layer and, together with
one-shot pruning early in training, lead to compressed models which train to lower accuracy than
the full network (e.g., EB in Table 5). This motivates our study to find an efficient procedure for
discovering small, dense networks early in training that can train to the same accuracy as their
overparameterized counterparts.
Principal Component Networks We show that after only a few training epochs, overparame-
terized networks can be transformed into small networks that exhibit comparable generalization
performance. Our work builds upon the next compelling observation: We consider overparameteri-
zation due to increased network width, a key quantity associated with high-accuracy models [4, 46].
We find that hidden layer activations in wide networks exist in low-dimensional subspaces an order of
magnitude smaller than the actual model width. We also find that these subspaces, which contribute
most to the generalization accuracy of the network, can be identified early in training.
Based on the above observations, we introduce a new family of deep learning models, which

we term Principal Component Networks (PCNs). A PCN transforms the wide layers in an original
overparameterized network into smaller layers that live in a lower dimensional space. To identify
the basis of this space for each layer, we use Principal Component Analysis (PCA) to find the
high-variance directions that describe the layer’s input and output activations. The transformations
introduced by PCNs eliminate all weights from the overparameterized model not relevant to these
bases. Only the linear combinations of channels defined by the high-variance principal components
are used to construct the transformed PCN layers. As such, PCNs have the following desirable
properties: 1) overparameterized layers are compressed using holistic layer-wise information rather
than individual channel measurements, 2) based on the above observations, the transformation
for each layer can be done once early in training, and 3) transformed PCN layers produce dense
architectures well suited for GPU acceleration.

More specifically, PCNs introduce the following procedure to reduce the computational cost of
training while achieving high end-model accuracy:
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(1) Randomly initialize a wide, overparameterized neural network.
(2) Train the network for a few epochs (often 10-20% of the total number of epochs).
(3) Use PCA to find the low-dimensional spaces of network activations and transform the weights

of the network using these subspaces to obtain the corresponding PCN.
(4) Continue training the smaller PCN for the remaining number of epochs that the overparame-

terized model would have required for convergence.
We describe the PCN transformation (step 3) for a variety of neural networks, including dense
neural networks (DNNs), convolutional neural networks (CNNs), and residual neural networks
(ResNets).

We empirically validate training PCNs on CIFAR-10 [34] and ImageNet [48] and compare against
training the corresponding overparameterized model. For both ResNet [22] and VGG-style architec-
tures [49], we show that PCNs can train faster, use less energy, and reach comparable end-model
accuracy. Interestingly, we show that PCNs derived from wide ResNet models have less parameters
but achieve higher accuracy than deep ResNet architectures. Our WideResNet-20-PCN1 (Table 3)
outperforms a deep ResNet-110 in test accuracy by 0.29% while training 50% faster and with 27% less
energy. This observation indicates that partially training and then compressing wide models may
lead to a more resource-efficient method for obtaining high-accuracy versus standard training of
deep neural networks. Furthermore, we compare PCNs against existing structure pruning methods
for subnetwork identification during early training and show that for the same level of trainable
parameter reduction PCNs achieve higher end-model accuracy.
We conclude this work by discussing the implications of our observations regarding hidden

layer activations beyond network compression. In particular, we highlight the connection of this
observation to the features learned by neural networks and discuss questions for future work in
areas such as model robustness and improved model accuracy.

2 BACKGROUND ANDMOTIVATING OBSERVATIONS
We first review PCA and then present the empirical observations about hidden layer activations
that motivate our work.

2.1 Principal Component Analysis
Given a set of𝑚-dimensional vectors, PCA computes a new basis for the vector space with the
following property: The first basis vector (termed principal component) is the direction of highest
variance among the data. The second basis vector has highest variance among directions perpen-
dicular to the first, and so on. An example is shown in Figure 1. Two-dimensional vectors in the
original [𝑥1, 𝑥2] basis can also be represented in the [𝑥1, 𝑥2] PCA basis. We define the effective
dimensionality 𝑚𝑒 of the 𝑚-dimensional space as the number of PCA directions with variance
greater than a threshold 𝜏 . In Figure 1, the spread along 𝑥2 does not help differentiate between the
two sets of points, as the original two-dimensional vectors exist primarily in a one-dimensional
space given by the coordinate 𝑥1.

We compute the principal components and associated variances using the spectral decomposition
of the covariance matrix. We find this method to be significantly faster computationally compared
to using the Singular Value Decomposition. Given 𝑁 data points in R𝑚 (organized in the matrix
𝑋𝑁×𝑚) with empirical mean 𝝁𝑚 ∈ R𝑚 we have:

𝝁𝑚, e𝑚,𝑉𝑚×𝑚 = 𝑃𝐶𝐴(𝑋𝑁×𝑚) = 𝑒𝑖𝑔ℎ
(

1
𝑁 − 1

(
𝑋𝑁×𝑚 − 𝝁𝑚

)𝑇 (
𝑋𝑁×𝑚 − 𝝁𝑚

) )
. (1)

Function 𝑒𝑖𝑔ℎ returns two quantities: the vector of eigenvalues (variances) e𝑚 , and a matrix 𝑉𝑚×𝑚
whose columns contain the eigenvectors (principal components). We assume that both outputs are
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Fig. 1. Two dimensional data in the original [𝑥1, 𝑥2] basis can also be represented in the [𝑥1, 𝑥2] PCA basis.
The data only have high variance along the 𝑥1 direction. The effective dimensionality𝑚𝑒 = 1.

sorted in descending eigenvalue order. To transform a vector x𝑚 into the PCA basis, one computes:
x̃𝑚 = (x𝑚 − 𝝁𝑚)𝑉𝑚×𝑚 . Subtracting off the mean vector 𝝁𝑚 centers the PCA coordinate system,
ensuring each principal component has mean zero when average over the 𝑁 data points.
PCA does not immediately extend to multi-dimensional inputs such as images. As a surrogate,

for a batch of 𝑁 matrices each with dimension ℎ ×𝑤 ×𝑚 (organized in the matrix 𝑋𝑁×ℎ×𝑤×𝑚),
we consider all ℎ ×𝑤 depth vectors of dimension𝑚 in each image to be examples of points in an
𝑚 dimensional space. View each axis in this space to be an image channel and the point cloud
a distribution of how likely each channel is to exhibit a certain pixel value, regardless of [ℎ,𝑤]
location. We can then run standard PCA on the flattened set of images 𝑋𝑁 ′×𝑚 with 𝑁 ′ = 𝑁 ×ℎ ×𝑤 .
The resulting𝑉𝑚×𝑚 tells us how to combine every depth vector from an original image into a depth
vector in the “principal image”. More specifically, given a batch of 𝑁 input images, compute PCA
as follows:

(1) 𝑋𝑁 ′×𝑚 = Flatten(𝑋𝑁×ℎ×𝑤×𝑚)
(2) 𝝁𝑚, e𝑚,𝑉𝑚×𝑚 = PCA(𝑋𝑁 ′×𝑚).

To transform an individual image 𝐼ℎ×𝑤×𝑚 into the PCA basis, one computes:

(1) 𝐼 (ℎ×𝑤)×𝑚 = Flatten(𝐼ℎ×𝑤×𝑚)
(2) 𝐼 (ℎ×𝑤)×𝑚 = (𝐼 (ℎ×𝑤)×𝑚 − 𝝁𝑚)𝑉𝑚×𝑚 (subtraction applies to all rows)
(3) 𝐼 𝑖

ℎ×𝑤×𝑚 = Reshape(𝐼 (ℎ×𝑤)×𝑚).
Channels in the transformed image are sorted according to decreasing variance of their pixel values.
E.g., the first channel (termed principal filter) is has the highest variance of pixel values (regardless
of [ℎ,𝑤] location) among the data.

2.2 Motivation Observations: Effective Dimensionality of Hidden Layer Activations
We use PCA to study the effective dimensionality (effective width) of hidden layer activations in
neural networks. We present three experiments that highlight our findings and then summarize
key takeaways.
Experiment 1 We first analyze the activations of a simple neural network after learning is

complete. We train a network with an input layer, a hidden layer with a variable number of nodes,
and an output layer with 10 neurons on MNIST [36]. Both dense layers use sigmoid activation
and we train until convergence of the validation accuracy. We then compute PCA on the network
activations after the hidden layer and before the output layer. The dimension of these activations is
equal to the number of nodes in the hidden layer and is thus varied by changing the number of
hidden neurons. In Figure 2a we plot the number of effective dimensions in the activation space
versus the number of full dimensions using a PCA variance threshold of 0.1. We see that that the
hidden layer activations exist in a subspace with dimension substantially smaller the full space:
with 450 nodes in the hidden layer the network achieves peak test accuracy of 98%, but rather than

ACM/IMS J. Data Sci., Vol. 1, No. 1, Article 1. Publication date: January 2023.



Principal Component Networks: Utilizing Low-Rank Activation Structure to Reduce Parameters Early in Training 1:5

0 100 200 300 400 500 600
Actual Dimensionality

0

100

200

300

400

500

600
Ef

fe
ct

iv
e 

Di
m

en
sio

na
lit

y

Hidden Activations
Reference line y= x
Peak Test Accuracy

(a) Effective dimensionality vs. width

2 4 6 8 10 12 14
Epoch

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

Train Accuracy
Test Accuracy

200

400

600

800

1000

1200

1400

Ef
fe

ct
iv

e 
Di

m
en

sio
na

lit
y

(o
ut

 o
f 8

,1
92

)

Overfitting

Subspace
Identification

Effective Dimensionality

(b) Effective dimensionality vs. training

Fig. 2. Effective dimensionality (# of high-variance directions) for hidden layer activations in simple neural
networks. (a) Hidden layer activations in trained neural networks exist primarily in subspaces more than 10×
smaller than the actual model width. (b) Moreover, the subspaces which contribute most to the generalization
accuracy of the network are identified early in training.

occupy 450 dimensions, the hidden layer outputs occupy a space with just over 40 dimensions—a
space more than 10× smaller.

Experiment 2 We also study the evolution of hidden layer subspaces in simple neural networks
during training. In this experiment we do not vary the network architecture, but instead consider
a fixed CNN over CIFAR-10. We use the Conv4 network [11] which consists of four convolution
layers followed by three dense layers. After each training epoch, we perform PCA on the hidden
activations which form the input to the first fully connected layer. This activation space contains
8,192 dimensions. We calculate PCA for this layer because it contains more than 86% of the total
weights, and thus, affects the end-model accuracy. We do not stop training at peak validation
accuracy to observe the effective dimensionality of the activation space during overfitting.
The results are shown in Figure 2b. We again use a PCA variance threshold of 0.1. There are

three regions of interest in this plot: In the first section, up to epoch two, notice that the effective
dimensionality grows slowly, but the test accuracy grows to 70%—93% of its peak at 75%. The data
variance in this ∼ 50-dimensional subspace (recall the full space has 8,192 dimensions) is critical
for generalization. Contrast this with region three, after the test accuracy peaks at epoch five. Now
the network is heavily overfitting, increasing the train accuracy to no avail. Also observe that the
network is rapidly creating directions with variance above the 0.1 threshold. All such directions
are overfitting to meaningless noise. In between, during epochs 2-5, the effective dimensionality
increases from ∼ 50 to ∼ 200. We conjecture that these directions are mainly overfitting to the
training data, as the test accuracy grows slowly while the train accuracy rapidly surpasses it. The
test accuracy can still increase in this regime due to fine-tuning of weights related to the high-
variance directions discovered in the first region. We conclude that the high-variance subspace
which contributes most to the generalization accuracy of the network is identified early in training.

Experiment 3 Lastly, we measure the effective dimensionality of hidden layer activations during
training in models representative of those used by practitioners. For this experiment we use a
WideResNet-20 (Table 6) over CIFAR-10. After each training epoch, we perform PCA on the hidden
activations between each layer and compute the effective dimensionality. We report results for
the hidden layer activations input to the last ResNet block in Figure 3 (similar results hold for all
layers). We use a threshold 𝜏 of 0.5 (5% of the peak variance after training). We also report train
and test accuracy.

Figure 3 contains two interesting observations. First, in the early phase of training, up to epoch 15,
the effective dimensionality and test accuracy grow quickly. In contrast, the latter phase of training
(after epoch 15) is characterized by a slow increase in both accuracy and effective dimensionality.

ACM/IMS J. Data Sci., Vol. 1, No. 1, Article 1. Publication date: January 2023.



1:6 Roger Waleffe and Theodoros Rekatsinas

Second, notice that (as was the case for the simple models in Experiments 1 and 2) the hidden
layer activations exist in a subspace with dimension significantly smaller than the full space: Even
though the layer inputs are 256-dimensional, they only exhibit variance above the threshold 𝜏
in at most 42 directions—a space 6× smaller. Finally, observe that while the training dynamics
of Experiment 2 and Experiment 3 qualitatively differ—in particular the more complex ResNet
model suffers less from overfitting—both experiments show that the generalization accuracy of the
network is primarily determined by the high-variance subspaces of network activations which are
identified early in training.
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Fig. 3. Effective dimensionality (# of high-variance directions) for the hidden layer activations input to the
last ResNet block in a WideResNet-20 trained on CIFAR-10. The high-variance subspace of activations which
contributes most to the generalization accuracy of the network is 1) 7× smaller than the full space (35 vs. 256)
and 2) identified early in training (before epoch 15 out of 182).

Takeaway Experiments 1, 2, and 3 show that hidden layer activations do not occupy their
full available dimensions. Rather, they exist in low-dimensional subspaces both during training
and once test accuracy peaks. Further, Experiments 2 and 3 show that the few high-variance
directions which contribute most to generalization accuracy of a given network are identified early
in training.We find these observations hold across a diverse array of models and datasets, beyond just
the experiments presented above. We use these observations as motivation to transform activations
into their high-variance PCA bases after only a few epochs.

3 PRINCIPAL COMPONENT NETWORKS
Based on the above observations, we now introduce PCNs. First, we describe their application
to dense (fully connected) layers. We then extend to CNNs and ResNets. Finally, we discuss the
end-to-end training procedure for PCNs.

3.1 PCNs for Dense Layers
Consider a network where the 𝑖𝑡ℎ hidden layer computes h𝑖+1𝑛 = 𝜎 (h𝑖𝑚𝑊 𝑖

𝑚×𝑛 + b𝑖𝑛). Here, 𝜎 is the
activation function, h𝑖𝑚 ∈ R𝑚 is the input activation vector, and h𝑖+1𝑛 ∈ R𝑛 is the output activation
vector.𝑊 𝑖

𝑚×𝑛 and b𝑖𝑛 are the layer weights and bias vector respectively. We use superscripts to
denote layer index and subscripts to denote dimension when defining a new variable, or for clarity.
Our goal is to transform𝑊 𝑖 and b𝑖 , for each layer 𝑖 , by considering the high-variance PCA basis of
both the input and output activation spaces.
Transformation Based on Input Activations To transform a layer based on the input activa-
tion space (called the input-based transformation), we compute PCA on a batch of input vectors h𝑖
(using Equation 1). Through this calculation, we obtain a mean vector 𝝁𝑖𝑚 , a vector e𝑖𝑚 of variances,
and a matrix 𝑉 𝑖

𝑚×𝑚 whose columns are the principal components (Section 2.1). After finding the
PCA basis, we can rewrite any input vector h𝑖 using these coordinates. If we do so, however, we
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Experimental Highlights

Background Motivating Observations
Observation: effective dimensionality of hidden 
layer activations in neural networks is small

hidden layer of varying width in fully connected network on MNIST

τ

Example: 
Actual Dimensionality: 2 
Effective Dimensionality: 1

characteristic hidden layer in WideResNet-20 on CIFAR-10

Experiment 1: PCA on a batch of hidden 
layer activations in a trained network

Takeaway: hidden layer activations 
exhibit variance primarily in low-
dimensional subspaces (~10x smaller 
than the actual model width)

Experiment 2: PCA on a batch of hidden 
layer activations during training

Takeaway:  
1) activations exhibit variance in small 

subspaces during and after training 
2) high-variance subspaces which 

contribute most to network accuracy 
are identified early in training

Implication: 
1) can use PCA to find high-variance subspaces of network activations early in training 
2) high-variance subspaces are small     project weights onto them to shrink the network→

Introduce: new architecture + training procedure to reduce computational cost of training

Training Procedure: 
1) Initialize and train an overparameterized network 

N for a few epochs (K epochs) 

2) Transform N into its corresponding PCN. For 
each layer to transform: 
A) Run PCA on the network activations 
B) Project network weights onto the activations’ 

high-variance subspace 

3) Continue training the generated PCN for the 
remaining epochs (T epochs)

PCN Input-Based Transformation Example For Dense Layers

2D Graphical Depiction

Benefits of Each Step

exploit overparameterization

shrink network early in training

more efficient training

• transformation based on activations not 
weights 

• holistic layer-wise transformation for 
compression, not localized measurements 
for structured or sparse pruning

hi+1 = σ(hiWi + bi)

ei, Vi = eigh ( 1
N − 1 (Hi − μi)T (Hi − μi))

h̃i = (hi − μi)Ui

W̃i = (Ui)TWi

b̃i = bi + μiWi

Legend
hi ∈ ℝm layer input activations

Wi ∈ ℝm×n

bi ∈ ℝn

σ
hi+1 ∈ ℝn

μi ∈ ℝm

ei ∈ ℝm

Vi ∈ ℝm×m

Ui ∈ ℝm×me

ĥi+1 = σ(h̃iW̃i + b̃i)

Hi ∈ ℝN×m

Original Layer i Approximate Layer i
transformation

1) Compute PCA on batch of N input activation vectors                    centered using the mean of these activations              :Hi ∈ ℝN×m μi ∈ ℝm

ei ∈ ℝm

Vi ∈ ℝm×m

vector of PCA variances sorted in descending order

matrix whose columns are the PCA principal components

2) From the PCA basis, compute the high-variance subspace:
the effective dimensionality of the PCA spaceme

Ui ∈ ℝm×me the first      columns of      are the high-variance subspaceme Vi

3) Transform the layer input vectors, weight matrix, 
and bias vector into the high-variance subspace:

Key Properties

Wi ∈ ℝm×n W̃i ∈ ℝme×n
reduces the size of layer weights

me ≪ m

how?

can transform each layer independently
hi+1 ∈ ℝn ĥi+1 ∈ ℝn (same output size)

˜

(other transformations for CNN 
Layers etc. can be derived)

weight matrix

bias vector

layer output activations

activation function

denotes transformed variable

batch of input activations

activation mean

PCA variances

principal components

effective dimensionality

high-variance PCA components

me

h2

h1

h̃2
h̃1

h2

h1

hw1 + b1 = 0

h2

h1

h̃2
h̃1 h2

h1

h̃1

hw2 + b2 = 0

PCA Basis High-variance Subspace
first column of

PCN Layer

h̃1

Original Layer

h̃1w1 + b1 = 0

h̃1w2 + b2 = 0

W ∈ ℝ2×2

first column of W ∈ ℝ1×2
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Network Name Total
Parameters

Trainable
Parameters

Test Acc. at Epoch 182

ResNet-20 274,362 272,762 91.03
ResNet-110 1,739,322 1,731,002 92.94

WideResNet-20 4,338,378 4,331,978 93.60 (+0.07, -0.08)

WideResNet-20-PCN0 1,443,018 1,323,850 93.52 (+0.10, -0.07)
WideResNet-20-PCN1 1,223,114 1,094,154 93.23
WideResNet-20-PCN2 541,834 473,802 92.50

<latexit sha1_base64="fW0pEgZhD9Q93jtzZbB7VvkkI9U="></latexit>

Network Name Total
Parameters

Trainable
Parameters

Top-1 (Top-5)
Val Acc. at Epoch 90

ResNet-50 25,610,152 25,557,032 75.60 (92.78)
ResNet-152 60,344,232 60,192,808 77.00 (93.3)

WideResNet-50 98,110,312 98,004,072 77.52 (93.92)

WideResNet-50-PCN 71,936,872 62,375,016 77.64 (93.85)

<latexit sha1_base64="BUR3QrWj76NtTHibjDxb0ocWrEk="></latexit>

Dataset Network Trainable
Parameters

Acc. PCN
Trainable
Parameters

PCN
Acc.

CIFAR-10 Conv4 2.43M 75.16 101k 77.25
CIFAR-10 WideResNet-20 4.33M 93.60 1.32M 93.52
ImageNet VGG-19 143M 70.99 27.2M 70.27
ImageNet WideResNet-50 98.0M 77.52 62.3M 77.64

Table 1: Summary of Results.

Table 2: ResNets and PCNs on CIFAR-10. PCN 
transformations occur after epoch 15 of 182.

Table 3: ResNets and PCNs on ImageNet. PCN 
transformation occurs after epoch 16 of 90.

Key Takeaways

1.6-24x parameter reductions

little, if any, PCN accuracy drop 

can scale to ImageNet

Transformation: Conv4: 2 of 5; WideResNet-20: 15 of 182 
Epoch                 VGG-19: 15 of 70; WideResNet-50: 16 of 90

transformation early in training

Related Work Discussion 

overparameterization improves accuracy 
(both due to width and depth) 

wide PCNs can outperform deep networks

Performance: Training Time and Energy
Caveat: For best performance, a new GPU kernel is required which fuses the 
PCN basis transformation at each layer (multiplication with U) with the layer itself.

PCNs have the potential to provide end-to-end 
cost reductions. For example:

WideResNet-20-PCN1 end-to-end training: 

- uses 15% less energy than WideResNet-20 
- trains 12% faster than WideResNet-20 
- uses 25% less energy than ResNet-110 
- trains 45% faster than ResNet-110

Transformation Overhead: less than one training epoch

Bottleneck is computing network activations, but 
only a small fraction of training data is needed 
for PCA statistics.

Question: Can we retain the accuracy benefits of 
overparameterized models but reduce the 
computational cost?

Model Size

A
cc

ur
ac

y

[Gunasekar et al., 2017; Li et al., 2020; 
Xie et al., 2020; Tan et al. 2020;  

https://nv-adlr.github.io/MegatronLM]

Model Size

C
om

pu
ta

tio
n

Recent Work: overparameterization may not always be needed for high accuracy

inference: parameters can be reduced using pruning or distillation

training: existence of “lottery ticket” subnetworks contained in overparameterized 
               networks which can train on their own to the same or similar accuracy

potential to reduce training costs but: 

- 1) subnetworks which match overparameterized accuracy are expensive to find 
- 2) subnetworks which are cheap to find result in reduced end-model test accuracy

Benefit Cost

[Sevilla et al., 2022]
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[LeCun et al., 1990; Han et al., 2015; Li et al., 2017; Hu et al., 2016; He et al., 2017; Hinton et al., 2015]

[Frankle et al., 2019; Frankle et al., 2020; You et al., 2019]

Our Work: We aim to efficiently discover small networks, derived from overparameterized 
models, that can train to the same end-model test accuracy.

allow for a reduction in the 
end-to-end cost of training

small networks are computed from overparameterized models using 
some transformation function (not restricted to subnetworks)

PCNs

Parameter Reduction w/o 
Accuracy Loss

[Wang et al. 2021] Early Bird Tickets Lottery Tickets

Resulting Architecture

Cost to Identify

Method Focus low-dim activations low-dim weights structured pruning sparse pruning

medium medium low high

dense dense dense sparse

low low low high

End-to-end Training Speed Up medium medium high none

Compression Granularity holistic layer-wise holistic layer-wise localized channel localized weight

1)

2)

3)

e.g.

- the 2D data exhibits 
variance primarily in 1D

1University of Wisconsin-Madison    2ETH Zurich    Correspondence to: <waleffe@wisc.edu> 

(a)

number of PCA principal components with 
variance greater than a threshold 

Principal Component Networks (PCNs): 
Parameter Reduction Early in Training

Roger Waleffe1 and Theodoros Rekatsinas1,2

Principal Component Networks
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Experimental Highlights

Background Motivating Observations
Observation: effective dimensionality of hidden 
layer activations in neural networks is small

hidden layer of varying width in fully connected network on MNIST

τ

Example: 
Actual Dimensionality: 2 
Effective Dimensionality: 1

characteristic hidden layer in WideResNet-20 on CIFAR-10

Experiment 1: PCA on a batch of hidden 
layer activations in a trained network

Takeaway: hidden layer activations 
exhibit variance primarily in low-
dimensional subspaces (~10x smaller 
than the actual model width)

Experiment 2: PCA on a batch of hidden 
layer activations during training

Takeaway:  
1) activations exhibit variance in small 

subspaces during and after training 
2) high-variance subspaces which 

contribute most to network accuracy 
are identified early in training

Implication: 
1) can use PCA to find high-variance subspaces of network activations early in training 
2) high-variance subspaces are small     project weights onto them to shrink the network→

Introduce: new architecture + training procedure to reduce computational cost of training

Training Procedure: 
1) Initialize and train an overparameterized network 

N for a few epochs (K epochs) 

2) Transform N into its corresponding PCN. For 
each layer to transform: 
A) Run PCA on the network activations 
B) Project network weights onto the activations’ 

high-variance subspace 

3) Continue training the generated PCN for the 
remaining epochs (T epochs)

PCN Input-Based Transformation Example For Dense Layers

2D Graphical Depiction

Benefits of Each Step

exploit overparameterization

shrink network early in training

more efficient training

• transformation based on activations not 
weights 

• holistic layer-wise transformation for 
compression, not localized measurements 
for structured or sparse pruning

hi+1 = σ(hiWi + bi)

ei, Vi = eigh ( 1
N − 1 (Hi − μi)T (Hi − μi))

h̃i = (hi − μi)Ui

W̃i = (Ui)TWi

b̃i = bi + μiWi

Legend
hi ∈ ℝm layer input activations

Wi ∈ ℝm×n

bi ∈ ℝn

σ
hi+1 ∈ ℝn

μi ∈ ℝm

ei ∈ ℝm

Vi ∈ ℝm×m

Ui ∈ ℝm×me

ĥi+1 = σ(h̃iW̃i + b̃i)

Hi ∈ ℝN×m

Original Layer i Approximate Layer i
transformation

1) Compute PCA on batch of N input activation vectors                    centered using the mean of these activations              :Hi ∈ ℝN×m μi ∈ ℝm

ei ∈ ℝm

Vi ∈ ℝm×m

vector of PCA variances sorted in descending order

matrix whose columns are the PCA principal components

2) From the PCA basis, compute the high-variance subspace:
the effective dimensionality of the PCA spaceme

Ui ∈ ℝm×me the first      columns of      are the high-variance subspaceme Vi

3) Transform the layer input vectors, weight matrix, 
and bias vector into the high-variance subspace:

Key Properties

Wi ∈ ℝm×n W̃i ∈ ℝme×n
reduces the size of layer weights

me ≪ m

how?

can transform each layer independently
hi+1 ∈ ℝn ĥi+1 ∈ ℝn (same output size)

˜

(other transformations for CNN 
Layers etc. can be derived)

weight matrix

bias vector

layer output activations

activation function

denotes transformed variable

batch of input activations

activation mean

PCA variances

principal components

effective dimensionality

high-variance PCA components

me

h2

h1

h̃2
h̃1

h2

h1

hw1 + b1 = 0

h2

h1

h̃2
h̃1 h2

h1

h̃1

hw2 + b2 = 0

PCA Basis High-variance Subspace
first column of

PCN Layer

h̃1

Original Layer

h̃1w1 + b1 = 0

h̃1w2 + b2 = 0

first column of W ∈ ℝ1×2
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Network Name Total
Parameters

Trainable
Parameters

Test Acc. at Epoch 182

ResNet-20 274,362 272,762 91.03
ResNet-110 1,739,322 1,731,002 92.94

WideResNet-20 4,338,378 4,331,978 93.60 (+0.07, -0.08)

WideResNet-20-PCN0 1,443,018 1,323,850 93.52 (+0.10, -0.07)
WideResNet-20-PCN1 1,223,114 1,094,154 93.23
WideResNet-20-PCN2 541,834 473,802 92.50
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Network Name Total
Parameters

Trainable
Parameters

Top-1 (Top-5)
Val Acc. at Epoch 90

ResNet-50 25,610,152 25,557,032 75.60 (92.78)
ResNet-152 60,344,232 60,192,808 77.00 (93.3)

WideResNet-50 98,110,312 98,004,072 77.52 (93.92)

WideResNet-50-PCN 71,936,872 62,375,016 77.64 (93.85)

<latexit sha1_base64="BUR3QrWj76NtTHibjDxb0ocWrEk="></latexit>

Dataset Network Trainable
Parameters

Acc. PCN
Trainable
Parameters

PCN
Acc.

CIFAR-10 Conv4 2.43M 75.16 101k 77.25
CIFAR-10 WideResNet-20 4.33M 93.60 1.32M 93.52
ImageNet VGG-19 143M 70.99 27.2M 70.27
ImageNet WideResNet-50 98.0M 77.52 62.3M 77.64

Table 1: Summary of Results.

Table 2: ResNets and PCNs on CIFAR-10. PCN 
transformations occur after epoch 15 of 182.

Table 3: ResNets and PCNs on ImageNet. PCN 
transformation occurs after epoch 16 of 90.

Key Takeaways

1.6-24x parameter reductions

little, if any, PCN accuracy drop 

can scale to ImageNet

Transformation: Conv4: 2 of 5; WideResNet-20: 15 of 182 
Epoch                 VGG-19: 15 of 70; WideResNet-50: 16 of 90

transformation early in training

Related Work Discussion 

overparameterization improves accuracy 
(both from width and depth) 

wide PCNs can outperform deep networks

Performance: Training Time and Energy
Caveat: For best performance, a new GPU kernel is required which fuses the 
PCN basis transformation at each layer (multiplication with U) with the layer itself.

PCNs have the potential to provide end-to-end 
cost reductions. For example:

WideResNet-20-PCN1 end-to-end training: 

- uses 15% less energy than WideResNet-20 
- trains 12% faster than WideResNet-20 
- uses 25% less energy than ResNet-110 
- trains 45% faster than ResNet-110

Transformation Overhead: less than one training epoch

Bottleneck is computing network activations, but 
only a small fraction of training data is needed 
for PCA statistics.

Question: Can we retain the accuracy benefits of 
overparameterized models but reduce the 
computational cost?

Model Size

A
cc

ur
ac

y

[Gunasekar et al., 2017; Li et al., 2020; 
Xie et al., 2020; Tan et al. 2020;  

https://nv-adlr.github.io/MegatronLM]

Model Size

C
om

pu
ta

tio
n

Recent Work: overparameterization may not always be needed for high accuracy

inference: parameters can be reduced using pruning or distillation

training: existence of “lottery ticket” subnetworks contained in overparameterized 
               networks which can train on their own to the same or similar accuracy

potential to reduce training costs but: 

- 1) subnetworks which match overparameterized accuracy are expensive to find 
- 2) subnetworks which are cheap to find result in reduced end-model test accuracy

Benefit Cost

[Sevilla et al., 2022]

1952 1960 1968 1976 1984 1992 2000 2008 2016
Publication date

1e+2

1e+4

1e+6

1e+8

1e+10

1e+12

1e+14

1e+16

1e+18

1e+20

1e+22

1e+24

Tr
ai

ni
ng

 c
om

pu
te

 (F
LO

Ps
)

Pr
e 

D
ee

p 
Le

ar
ni

ng
 E

ra

D
ee

p 
Le

ar
ni

ng
 E

ra

La
rg

e-
Sc

al
e 

Er
a

Training compute (FLOPs) of milestone Machine Learning systems over time
n = 121

0 20 40 60 80 100 120 140 160 180
Number of Parameters (Millions)

74

76

78

80

82

84

Im
ag

en
et

To
p-

1
A

cc
ur

ac
y

(%
)

ResNet-34

ResNet-50

ResNet-152

DenseNet-201

Inception-v2

Inception-ResNet-v2

NASNet-A

NASNet-A

ResNeXt-101

Xception

AmoebaNet-A
AmoebaNet-C

SENet

B0

B3

B4
B5

B6
EfficientNet-B7

[LeCun et al., 1990; Han et al., 2015; Li et al., 2017; Hu et al., 2016; He et al., 2017; Hinton et al., 2015]

[Frankle et al., 2019; Frankle et al., 2020; You et al., 2019]

Our Work: We aim to efficiently discover small networks, derived from overparameterized 
models, that can train to the same end-model test accuracy.

allow for a reduction in the 
end-to-end cost of training

small networks are computed from overparameterized models using 
some transformation function (not restricted to subnetworks)

PCNs

Parameter Reduction w/o 
Accuracy Loss

[Wang et al. 2021] Early Bird Tickets Lottery Tickets

Resulting Architecture

Cost to Identify

Method Focus low-dim activations low-dim weights structured pruning sparse pruning

medium medium low high

dense dense dense sparse

low low low high

End-to-end Training Speed Up medium medium high none

Compression Granularity holistic layer-wise holistic layer-wise localized channel localized weight

1)

2)

3)

e.g.

- the 2D data exhibits 
variance primarily in 1D

1University of Wisconsin-Madison    2ETH Zurich    Correspondence to: <waleffe@wisc.edu> 

(b)

number of PCA principal components with 
variance greater than a threshold 

Principal Component Networks (PCNs): 
Parameter Reduction Early in Training

Roger Waleffe1 and Theodoros Rekatsinas1,2

Principal Component Networks
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Experimental Highlights

Background Motivating Observations
Observation: effective dimensionality of hidden 
layer activations in neural networks is small

hidden layer of varying width in fully connected network on MNIST

τ

Example: 
Actual Dimensionality: 2 
Effective Dimensionality: 1

characteristic hidden layer in WideResNet-20 on CIFAR-10

Experiment 1: PCA on a batch of hidden 
layer activations in a trained network

Takeaway: hidden layer activations 
exhibit variance primarily in low-
dimensional subspaces (~10x smaller 
than the actual model width)

Experiment 2: PCA on a batch of hidden 
layer activations during training

Takeaway:  
1) activations exhibit variance in small 

subspaces during and after training 
2) high-variance subspaces which 

contribute most to network accuracy 
are identified early in training

Implication: 
1) can use PCA to find high-variance subspaces of network activations early in training 
2) high-variance subspaces are small     project weights onto them to shrink the network→

Introduce: new architecture + training procedure to reduce computational cost of training

Training Procedure: 
1) Initialize and train an overparameterized network 

N for a few epochs (K epochs) 

2) Transform N into its corresponding PCN. For 
each layer to transform: 
A) Run PCA on the network activations 
B) Project network weights onto the activations’ 

high-variance subspace 

3) Continue training the generated PCN for the 
remaining epochs (T epochs)

PCN Input-Based Transformation Example For Dense Layers

2D Graphical Depiction

Benefits of Each Step

exploit overparameterization

shrink network early in training

more efficient training

• transformation based on activations not 
weights 

• holistic layer-wise transformation for 
compression, not localized measurements 
for structured or sparse pruning

hi+1 = σ(hiWi + bi)

ei, Vi = eigh ( 1
N − 1 (Hi − μi)T (Hi − μi))

h̃i = (hi − μi)Ui

W̃i = (Ui)TWi

b̃i = bi + μiWi

Legend
hi ∈ ℝm layer input activations

Wi ∈ ℝm×n

bi ∈ ℝn

σ
hi+1 ∈ ℝn

μi ∈ ℝm

ei ∈ ℝm

Vi ∈ ℝm×m

Ui ∈ ℝm×me

ĥi+1 = σ(h̃iW̃i + b̃i)

Hi ∈ ℝN×m

Original Layer i Approximate Layer i
transformation

1) Compute PCA on batch of N input activation vectors                    centered using the mean of these activations              :Hi ∈ ℝN×m μi ∈ ℝm

ei ∈ ℝm

Vi ∈ ℝm×m

vector of PCA variances sorted in descending order

matrix whose columns are the PCA principal components

2) From the PCA basis, compute the high-variance subspace:
the effective dimensionality of the PCA spaceme

Ui ∈ ℝm×me the first      columns of      are the high-variance subspaceme Vi

3) Transform the layer input vectors, weight matrix, 
and bias vector into the high-variance subspace:

Key Properties

Wi ∈ ℝm×n W̃i ∈ ℝme×n
reduces the size of layer weights

me ≪ m

how?

can transform each layer independently
hi+1 ∈ ℝn ĥi+1 ∈ ℝn (same output size)

˜

(other transformations for CNN 
Layers etc. can be derived)

weight matrix

bias vector

layer output activations

activation function

denotes transformed variable

batch of input activations

activation mean

PCA variances

principal components

effective dimensionality

high-variance PCA components

me

h2

h1

h̃2
h̃1

h2

h1

hw1 + b1 = 0

h2

h1

h̃2
h̃1 h2

h1

h̃1

hw2 + b2 = 0

PCA Basis High-variance Subspace
first column of

PCN Layer

h̃1

Original Layer

h̃1w1 + b1 = 0

h̃1w2 + b2 = 0

W ∈ ℝ2×2

first column of W ∈ ℝ1×2
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Network Name Total
Parameters

Trainable
Parameters

Test Acc. at Epoch 182

ResNet-20 274,362 272,762 91.03
ResNet-110 1,739,322 1,731,002 92.94

WideResNet-20 4,338,378 4,331,978 93.60 (+0.07, -0.08)

WideResNet-20-PCN0 1,443,018 1,323,850 93.52 (+0.10, -0.07)
WideResNet-20-PCN1 1,223,114 1,094,154 93.23
WideResNet-20-PCN2 541,834 473,802 92.50

<latexit sha1_base64="fW0pEgZhD9Q93jtzZbB7VvkkI9U="></latexit>

Network Name Total
Parameters

Trainable
Parameters

Top-1 (Top-5)
Val Acc. at Epoch 90

ResNet-50 25,610,152 25,557,032 75.60 (92.78)
ResNet-152 60,344,232 60,192,808 77.00 (93.3)

WideResNet-50 98,110,312 98,004,072 77.52 (93.92)

WideResNet-50-PCN 71,936,872 62,375,016 77.64 (93.85)
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Dataset Network Trainable
Parameters

Acc. PCN
Trainable
Parameters

PCN
Acc.

CIFAR-10 Conv4 2.43M 75.16 101k 77.25
CIFAR-10 WideResNet-20 4.33M 93.60 1.32M 93.52
ImageNet VGG-19 143M 70.99 27.2M 70.27
ImageNet WideResNet-50 98.0M 77.52 62.3M 77.64

Table 1: Summary of Results.

Table 2: ResNets and PCNs on CIFAR-10. PCN 
transformations occur after epoch 15 of 182.

Table 3: ResNets and PCNs on ImageNet. PCN 
transformation occurs after epoch 16 of 90.

Key Takeaways

1.6-24x parameter reductions

little, if any, PCN accuracy drop 

can scale to ImageNet

Transformation: Conv4: 2 of 5; WideResNet-20: 15 of 182 
Epoch                 VGG-19: 15 of 70; WideResNet-50: 16 of 90

transformation early in training

Related Work Discussion 

overparameterization improves accuracy 
(both due to width and depth) 

wide PCNs can outperform deep networks

Performance: Training Time and Energy
Caveat: For best performance, a new GPU kernel is required which fuses the 
PCN basis transformation at each layer (multiplication with U) with the layer itself.

PCNs have the potential to provide end-to-end 
cost reductions. For example:

WideResNet-20-PCN1 end-to-end training: 

- uses 15% less energy than WideResNet-20 
- trains 12% faster than WideResNet-20 
- uses 25% less energy than ResNet-110 
- trains 45% faster than ResNet-110

Transformation Overhead: less than one training epoch

Bottleneck is computing network activations, but 
only a small fraction of training data is needed 
for PCA statistics.

Question: Can we retain the accuracy benefits of 
overparameterized models but reduce the 
computational cost?

Model Size
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[Gunasekar et al., 2017; Li et al., 2020; 
Xie et al., 2020; Tan et al. 2020;  

https://nv-adlr.github.io/MegatronLM]
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Recent Work: overparameterization may not always be needed for high accuracy

inference: parameters can be reduced using pruning or distillation

training: existence of “lottery ticket” subnetworks contained in overparameterized 
               networks which can train on their own to the same or similar accuracy

potential to reduce training costs but: 

- 1) subnetworks which match overparameterized accuracy are expensive to find 
- 2) subnetworks which are cheap to find result in reduced end-model test accuracy

Benefit Cost

[Sevilla et al., 2022]
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[LeCun et al., 1990; Han et al., 2015; Li et al., 2017; Hu et al., 2016; He et al., 2017; Hinton et al., 2015]

[Frankle et al., 2019; Frankle et al., 2020; You et al., 2019]

Our Work: We aim to efficiently discover small networks, derived from overparameterized 
models, that can train to the same end-model test accuracy.

allow for a reduction in the 
end-to-end cost of training

small networks are computed from overparameterized models using 
some transformation function (not restricted to subnetworks)

PCNs

Parameter Reduction w/o 
Accuracy Loss

[Wang et al. 2021] Early Bird Tickets Lottery Tickets

Resulting Architecture

Cost to Identify

Method Focus low-dim activations low-dim weights structured pruning sparse pruning

medium medium low high

dense dense dense sparse

low low low high

End-to-end Training Speed Up medium medium high none

Compression Granularity holistic layer-wise holistic layer-wise localized channel localized weight

1)

2)

3)

e.g.

- the 2D data exhibits 
variance primarily in 1D

1University of Wisconsin-Madison    2ETH Zurich    Correspondence to: <waleffe@wisc.edu> 

(c)

number of PCA principal components with 
variance greater than a threshold 

Principal Component Networks (PCNs): 
Parameter Reduction Early in Training

Roger Waleffe1 and Theodoros Rekatsinas1,2
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Experimental Highlights

Background Motivating Observations
Observation: effective dimensionality of hidden 
layer activations in neural networks is small

hidden layer of varying width in fully connected network on MNIST

τ

Example: 
Actual Dimensionality: 2 
Effective Dimensionality: 1

characteristic hidden layer in WideResNet-20 on CIFAR-10

Experiment 1: PCA on a batch of hidden 
layer activations in a trained network

Takeaway: hidden layer activations 
exhibit variance primarily in low-
dimensional subspaces (~10x smaller 
than the actual model width)

Experiment 2: PCA on a batch of hidden 
layer activations during training

Takeaway:  
1) activations exhibit variance in small 

subspaces during and after training 
2) high-variance subspaces which 

contribute most to network accuracy 
are identified early in training

Implication: 
1) can use PCA to find high-variance subspaces of network activations early in training 
2) high-variance subspaces are small     project weights onto them to shrink the network→

Introduce: new architecture + training procedure to reduce computational cost of training

Training Procedure: 
1) Initialize and train an overparameterized network 

N for a few epochs (K epochs) 

2) Transform N into its corresponding PCN. For 
each layer to transform: 
A) Run PCA on the network activations 
B) Project network weights onto the activations’ 

high-variance subspace 

3) Continue training the generated PCN for the 
remaining epochs (T epochs)

PCN Input-Based Transformation Example For Dense Layers

2D Graphical Depiction

Benefits of Each Step

exploit overparameterization

shrink network early in training

more efficient training

• transformation based on activations not 
weights 

• holistic layer-wise transformation for 
compression, not localized measurements 
for structured or sparse pruning

hi+1 = σ(hiWi + bi)

ei, Vi = eigh ( 1
N − 1 (Hi − μi)T (Hi − μi))

h̃i = (hi − μi)Ui

W̃i = (Ui)TWi

b̃i = bi + μiWi

Legend
hi ∈ ℝm layer input activations

Wi ∈ ℝm×n

bi ∈ ℝn

σ
hi+1 ∈ ℝn

μi ∈ ℝm

ei ∈ ℝm

Vi ∈ ℝm×m

Ui ∈ ℝm×me

ĥi+1 = σ(h̃iW̃i + b̃i)

Hi ∈ ℝN×m

Original Layer i Approximate Layer i
transformation

1) Compute PCA on batch of N input activation vectors                    centered using the mean of these activations              :Hi ∈ ℝN×m μi ∈ ℝm

ei ∈ ℝm

Vi ∈ ℝm×m

vector of PCA variances sorted in descending order

matrix whose columns are the PCA principal components

2) From the PCA basis, compute the high-variance subspace:
the effective dimensionality of the PCA spaceme

Ui ∈ ℝm×me the first      columns of      are the high-variance subspaceme Vi

3) Transform the layer input vectors, weight matrix, 
and bias vector into the high-variance subspace:

Key Properties

Wi ∈ ℝm×n W̃i ∈ ℝme×n
reduces the size of layer weights

me ≪ m

how?

can transform each layer independently
hi+1 ∈ ℝn ĥi+1 ∈ ℝn (same output size)

˜

(other transformations for CNN 
Layers etc. can be derived)

weight matrix

bias vector

layer output activations

activation function

denotes transformed variable

batch of input activations

activation mean

PCA variances

principal components

effective dimensionality

high-variance PCA components

me

h2

h1

h̃2
h̃1

h2

h1

hw1 + b1 = 0

h2

h1

h̃2
h̃1 h2

h1

h̃1

hw2 + b2 = 0

PCA Basis High-variance Subspace
first column of

PCN Layer

h̃1

Original Layer

h̃1w1 + b1 = 0

h̃1w2 + b2 = 0

W ∈ ℝ2×2

first column of W ∈ ℝ1×2
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Network Name Total
Parameters

Trainable
Parameters

Test Acc. at Epoch 182

ResNet-20 274,362 272,762 91.03
ResNet-110 1,739,322 1,731,002 92.94

WideResNet-20 4,338,378 4,331,978 93.60 (+0.07, -0.08)

WideResNet-20-PCN0 1,443,018 1,323,850 93.52 (+0.10, -0.07)
WideResNet-20-PCN1 1,223,114 1,094,154 93.23
WideResNet-20-PCN2 541,834 473,802 92.50

<latexit sha1_base64="fW0pEgZhD9Q93jtzZbB7VvkkI9U=">AAAEbHicnVPLbtNAFHWTACW8WmBXIY2oqFLkWDN2/MiuUCGxqgLqS6qjajyZpKOMPZZnTCmWv5IVf8CKPTvGiZXWLWy4kuVzn+fo6k6UciYVhD/WWu3OvfsP1h92Hz1+8vTZxubzYynyjNAjIrjITiMsKWcJPVJMcXqaZhTHEacn0Xy/yp98oZlkIjlUVykdx3iWsCkjWOnQ+WaLhxGdsaTAnM2St2UoScZSJdk32q0zCkc5x1lZcJAW0Bq4LCkbCFmwQmUX1BYqkWY5p6vAAVWXIpuDAxxTsAMOhcI8TOhlpRqMcKbDSousUhlmCdbq/5EWaR+BXvVzd1clx5iDd4RYACvwIRXkAgxhGF7LidmkIeczlVpR34V6ou2aHoImcu2l47q+CZ3K8V3Lg6A3tC0/2AU35tXtyxYPms5gYNpO7aChbQYwqPp9C1b9juU02kNS6+lluwXqo+u9nbAJvaltGJhIa3OQvXQgHJjQr5xQ0a8qmhaaw7XLBcnQ/h+W/mj/oNKKzKHjmcFiuGebju+aEHlNJm+wZArcJlMklBLxasMhTSaro+kuvPq4uucb21AvpTJwF6AabBu1jc43foYTQfKYJopwLOUZgqkaFzhTjHCqp+eSppjM8YyeaZjoS5HjYvEsSvBGRyZgKjL9JQosojc7ChxLeRVHujLG6kLezlXBv+XOcjUNxgVL0lzRhCyJpjkHSoDqjYEJyyhR/EoDrJ+T1grIhT5jUl1xt0ETCTHXu5KlXg26vYi74Ni2kGcNPtnbe+/rJa0bW8Zro2cgwzf2jI/GyDgySOt763e71W63f3VedrY6r5alrbW654XRsM7OH8i1PY0=</latexit>

Network Name Total
Parameters

Trainable
Parameters

Top-1 (Top-5)
Val Acc. at Epoch 90

ResNet-50 25,610,152 25,557,032 75.60 (92.78)
ResNet-152 60,344,232 60,192,808 77.00 (93.3)

WideResNet-50 98,110,312 98,004,072 77.52 (93.92)

WideResNet-50-PCN 71,936,872 62,375,016 77.64 (93.85)
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Dataset Network Trainable
Parameters

Acc. PCN
Trainable
Parameters

PCN
Acc.

CIFAR-10 Conv4 2.43M 75.16 101k 77.25
CIFAR-10 WideResNet-20 4.33M 93.60 1.32M 93.52
ImageNet VGG-19 143M 70.99 27.2M 70.27
ImageNet WideResNet-50 98.0M 77.52 62.3M 77.64

Table 1: Summary of Results.

Table 2: ResNets and PCNs on CIFAR-10. PCN 
transformations occur after epoch 15 of 182.

Table 3: ResNets and PCNs on ImageNet. PCN 
transformation occurs after epoch 16 of 90.

Key Takeaways

1.6-24x parameter reductions

little, if any, PCN accuracy drop 

can scale to ImageNet

Transformation: Conv4: 2 of 5; WideResNet-20: 15 of 182 
Epoch                 VGG-19: 15 of 70; WideResNet-50: 16 of 90

transformation early in training

Related Work Discussion 

overparameterization improves accuracy 
(both due to width and depth) 

wide PCNs can outperform deep networks

Performance: Training Time and Energy
Caveat: For best performance, a new GPU kernel is required which fuses the 
PCN basis transformation at each layer (multiplication with U) with the layer itself.

PCNs have the potential to provide end-to-end 
cost reductions. For example:

WideResNet-20-PCN1 end-to-end training: 

- uses 15% less energy than WideResNet-20 
- trains 12% faster than WideResNet-20 
- uses 25% less energy than ResNet-110 
- trains 45% faster than ResNet-110

Transformation Overhead: less than one training epoch

Bottleneck is computing network activations, but 
only a small fraction of training data is needed 
for PCA statistics.

Question: Can we retain the accuracy benefits of 
overparameterized models but reduce the 
computational cost?

Model Size
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[Gunasekar et al., 2017; Li et al., 2020; 
Xie et al., 2020; Tan et al. 2020;  

https://nv-adlr.github.io/MegatronLM]
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Recent Work: overparameterization may not always be needed for high accuracy

inference: parameters can be reduced using pruning or distillation

training: existence of “lottery ticket” subnetworks contained in overparameterized 
               networks which can train on their own to the same or similar accuracy

potential to reduce training costs but: 

- 1) subnetworks which match overparameterized accuracy are expensive to find 
- 2) subnetworks which are cheap to find result in reduced end-model test accuracy

Benefit Cost

[Sevilla et al., 2022]
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[LeCun et al., 1990; Han et al., 2015; Li et al., 2017; Hu et al., 2016; He et al., 2017; Hinton et al., 2015]

[Frankle et al., 2019; Frankle et al., 2020; You et al., 2019]

Our Work: We aim to efficiently discover small networks, derived from overparameterized 
models, that can train to the same end-model test accuracy.

allow for a reduction in the 
end-to-end cost of training

small networks are computed from overparameterized models using 
some transformation function (not restricted to subnetworks)

PCNs

Parameter Reduction w/o 
Accuracy Loss

[Wang et al. 2021] Early Bird Tickets Lottery Tickets

Resulting Architecture

Cost to Identify

Method Focus low-dim activations low-dim weights structured pruning sparse pruning

medium medium low high

dense dense dense sparse

low low low high

End-to-end Training Speed Up medium medium high none

Compression Granularity holistic layer-wise holistic layer-wise localized channel localized weight

1)

2)

3)

e.g.

- the 2D data exhibits 
variance primarily in 1D

1University of Wisconsin-Madison    2ETH Zurich    Correspondence to: <waleffe@wisc.edu> 

(d)

Fig. 4. End-to-end illustration of the PCN input-based transformation. (a) A batch of two-dimensional [ℎ1, ℎ2]
hidden layer activations input to the layer (shown as points with the different colors illustration different
classes) and the original weights which act on these activations. (b) The input hidden activations have an
effective dimensionality of one. They only have high-variance along the first principal component ℎ̃1. (c) The
input-based transformation will approximate the original layer by selecting only the high-variance subspace.
(d) The original input activations and weights of the layer are transformed into the high-variance subspace.
The columns of the weight matrix are now one-dimensional instead of two-dimensional.

must also rewrite the layer weight matrix and bias vector. Transformations of h𝑖 ,𝑊 𝑖 , and b𝑖 into
the PCA basis are given in Equation 2. We denote variables represented using PCA coordinates
with tilde.

h̃𝑖𝑚 = (h𝑖𝑚 − 𝝁𝑖𝑚)𝑉 𝑖
𝑚×𝑚 (2)

�̃� 𝑖
𝑚×𝑛 = (𝑉 𝑖

𝑚×𝑚)𝑇𝑊 𝑖
𝑚×𝑛 b̃𝑖𝑛 = b𝑖𝑛 + 𝝁𝑖𝑚𝑊 𝑖

𝑚×𝑛

By plugging in the definitions, we have that 𝜎 (h̃𝑖�̃� 𝑖 + b̃𝑖 ) is equivalent to the original 𝜎 (h𝑖𝑊 𝑖 + b𝑖 ).
Changing basis does not change the output.

Instead of performing an identity transformation by using the full PCA basis, we can approximate
the original hidden layer by using only the high-variance subspace. We define this subspace to
contain𝑚𝑒 dimensions, which corresponds to the effective dimensionality of the PCA space under
some threshold 𝜏 (see Section 2.1). Since the columns of 𝑉 𝑖 are sorted according to decreasing
variance, the first𝑚𝑒 columns contain the PCA directions which describe the subspace. We denote
the matrix 𝑉 𝑖 truncated after𝑚𝑒 columns by the matrix𝑈 𝑖

𝑚×𝑚𝑒
. In Equation 3 we rewrite h𝑖 ,𝑊 𝑖 ,

and b𝑖 in the high-variance subspace of the input activations.

h̃𝑖𝑚𝑒
= (h𝑖𝑚 − 𝝁𝑖𝑚)𝑈 𝑖

𝑚×𝑚𝑒
(3)

�̃� 𝑖
𝑚𝑒×𝑛 = (𝑈 𝑖

𝑚×𝑚𝑒
)𝑇𝑊 𝑖

𝑚×𝑛 b̃𝑖𝑛 = b𝑖𝑛 + 𝝁𝑖𝑚𝑊 𝑖
𝑚×𝑛

The hidden layer 𝜎 (h̃𝑖�̃� 𝑖 + b̃𝑖 ) is no longer identical to the original 𝜎 (h𝑖𝑊 𝑖 +b𝑖 ) but it contains fewer
trainable weights; The size of the weight matrix𝑊 reduces from𝑚 × 𝑛 to𝑚𝑒 × 𝑛. We empirically
find that often𝑚𝑒 ≪𝑚 (see Section 2.2). Despite approximating the original hidden layer, we have
not changed the dimension of the output h𝑖+1. This means we do not need to modify layer 𝑖 + 1.
In Figure 4 we conceptually illustrate the end-to-end steps in the input-based transformation for
dense layers.

This approximation introduces limited error to the output of the transformed layer. Errors arise
due to dropping the dot product between the last𝑚−𝑚𝑒 elements of h̃𝑖𝑚 and the last𝑚−𝑚𝑒 rows of
�̃� 𝑖

𝑚×𝑛 . However, since h̃𝑖𝑚 is represented using the PCA basis, the dropped coordinates have mean
zero and variance less than the threshold 𝜏 . For small 𝜏 , the approximation ignores dot products
between vectors with 𝐿2 norm close to zero and the final𝑚 −𝑚𝑒 rows of �̃� 𝑖

𝑚×𝑛 .

ACM/IMS J. Data Sci., Vol. 1, No. 1, Article 1. Publication date: January 2023.
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Transformation Based on Output Activations We can also reduce the parameters in layer 𝑖
using the PCA basis of the subsequent layer 𝑖 + 1 (which we refer to as the output-based transforma-
tion). The basic idea is to use the fact that if we know layer 𝑖 + 1 is going to perform the input-based
transformation, then we can analyze this transformation to see which outputs of layer 𝑖 are required
to execute the transformation with low error. As such, the output-based transformation at layer 𝑖
requires that layer 𝑖 + 1 perform the input-based transformation.

More specifically, assume that layer 𝑖 is transformed per the input-based transformation (Equation
3). Layer 𝑖 then computes an approximate ĥ𝑖+1 output vector: ĥ𝑖+1𝑛 = 𝜎 (h̃𝑖𝑚𝑒

�̃� 𝑖
𝑚𝑒×𝑛 + b̃

𝑖
𝑛). We can

further compress �̃� 𝑖 and b̃𝑖 using information about the output activation space. Since neural
networks compose layers, the next layer 𝑖 + 1 will consider ĥ𝑖+1 as its input. If we consider the
input-based transformation for layer 𝑖 + 1, we have that h̃𝑖+1𝑛𝑒

= (ĥ𝑖+1𝑛 − 𝝁𝑖+1𝑛 )𝑈 𝑖+1
𝑛×𝑛𝑒 . We next rewrite

h̃𝑖+1 as a function of the approximate weight matrix �̃� 𝑖 of the previous layer. We have for the 𝑗𝑡ℎ

component of h̃𝑖+1:

h̃𝑖+1 [ 𝑗] =
𝑛∑︁
𝑙=1

(
ĥ𝑖+1 [𝑙] − 𝝁𝑖+1 [𝑙]

)
𝑈 𝑖+1 [𝑙, 𝑗]

=

𝑛∑︁
𝑙=1

(
𝜎

(
𝑚𝑒∑︁
𝑘=1

h̃𝑖 [𝑘]�̃� 𝑖 [𝑘, 𝑙] + b̃𝑖 [𝑙]
)
− 𝝁𝑖+1 [𝑙]

)
𝑈 𝑖+1 [𝑙, 𝑗] . (4)

The elements of h̃𝑖+1 are linear combinations of the centered elements in ĥ𝑖+1 weighted by the
columns of 𝑈 𝑖+1. For all elements 𝑗 , the influence of the 𝑙𝑡ℎ output of layer 𝑖 , denoted ĥ𝑖+1 [𝑙], on
h̃𝑖+1 [ 𝑗] is determined by 𝑈 𝑖+1 [𝑙, 𝑗]. If most entries in the the 𝑙𝑡ℎ row of 𝑈 𝑖+1 have large values,
output ĥ𝑖+1 [𝑙] influences many entries in h̃𝑖+1. On the other hand, if every entry in the 𝑙𝑡ℎ row of
𝑈 𝑖+1 is small, the 𝑙𝑡ℎ output of layer 𝑖 does not influence any entry in h̃𝑖+1. We use the 𝐿1 norm of
row 𝑙 in𝑈 𝑖+1 to determine how important output ĥ𝑖+1 [𝑙] is for calculating h̃𝑖+1.
We use the above influence measurement to define the output-based transformation of layer 𝑖 .

Using the 𝐿1 norm criterion described above, we find the subset 𝑆 ⊆ [1 . . . 𝑛] of the indices in ĥ𝑖+1

with the highest row-wise 𝐿1 norm in𝑈 𝑖+1. The size of 𝑆 is configurable and can be fixed by the
user or determined using an 𝐿1-norm threshold. Given 𝑆 , Equation 4 becomes:

h̃𝑖+1 [ 𝑗] =
∑︁
𝑙 ∈𝑆

(
𝜎

(
𝑚𝑒∑︁
𝑘=1

h̃𝑖 [𝑘]�̃� 𝑖 [𝑘, 𝑙] + b̃𝑖 [𝑙]
)
− 𝝁𝑖+1 [𝑙]

)
𝑈 𝑖+1 [𝑙, 𝑗] . (5)

The columns of�̃� 𝑖 , entries of b̃𝑖 , entries of 𝝁𝑖+1, and rows of𝑈 𝑖+1 with indices in 𝑆𝐶 can be removed
from the network. The rows in𝑊 𝑖+1 with indices in 𝑆𝐶 must also be removed so dimensions match
when multiplying by (𝑈 𝑖+1)𝑇 in Equation 3.

The output-based transformation and input-based transformation can be applied to layer 𝑖 in
either order. In the Section A we discuss technical details regarding the transformation order.

3.2 PCNs for Convolutional Layers and ResNets
We extend the PCN transformations to CNNs and ResNets. We provide a high-level description but
leave additional details to the Appendix.
Convolutional Layers To transform convolutional layers, the intuition is the same as for dense
layers: Rather than representing hidden layer activations using their default filters, we would like
to find a new basis of “principal filters” which exhibit sorted high to low variance.
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Convolutional layers operate over matrices and tensors. We denote a convolutional layer
𝐻 𝑖+1
ℎ′×𝑤′×𝑛 = 𝜎 (𝐻 𝑖

ℎ×𝑤×𝑚 ∗𝑊
𝑖
𝑘1×𝑘2×𝑚×𝑛 + b

𝑖
𝑛), where ℎ and 𝑤 describe the height and width of the

input data,𝑚 is the number of input filters, 𝑘1 × 𝑘2 is the kernel size, and 𝑛 is the number of output
filters. Recall from Section 2.1 that to compute PCA for a batch of 𝑁 𝐻ℎ×𝑤×𝑚 matrices, we consider
all ℎ ×𝑤 depth vectors of dimension𝑚 in each image to be examples of points in an𝑚 dimensional
space. We can then run standard PCA on the flattened set of images 𝐻𝑁 ′×𝑚 with 𝑁 ′ = 𝑁 × ℎ ×𝑤 .
The resulting𝑉𝑚×𝑚 tells us how to combine every depth vector from an original image into a depth
vector in the “principal image”.

Once we calculate PCA for the input and output activation spaces, i.e., we calculate 𝑉 𝑖 and 𝑉 𝑖+1,
we can perform the input- and output-based transformation to convolutional layer 𝑖 . Doing so
requires extending Equation 3 and Equation 5 to handle tensors instead of vectors and matrices.
We leave the details to Section B.
ResNets While ResNets consist of convolution layers, they require special care due to the inclu-
sion of residual connections. Since the input-based transformation (for both dense and convolution
layers) modifies only layer 𝑖 and not subsequent layers, it can be applied immediately to ResNet
architectures. The output-based transformation, however, needs to be modified for some layers.
The output of the final layer in a residual block is added to the output of all other residual blocks in
a residual stage. Thus, we introduce the added constraint that all layers whose outputs are added
together need to perform the output-based transformation in the same way. More details can be
found in Section C.

3.3 Training PCNs
Given the above layer transformations, we present the training procedure for PCNs.
Input We assume as input an overparameterized network architecture 𝑁 with layers 𝐿, a
set of layers 𝐼 ⊆ 𝐿 to transform via the input-based transformation, a set of layers 𝑂 ⊆ 𝐿 to
transform via the output-based transformation, a number of epochs 𝐾 to train before applying the
transformation, a number of epochs𝑇 to train after transformation, and a dictionary𝐶 containing the
thresholds/number of dimensions to use when transforming each layer in 𝐼 or 𝑂 . Since the output-
based transformation at layer 𝑖 requires that layer 𝑖 + 1 perform the input-based transformation,
there exists a constraint between the sets 𝐼 and 𝑂 : if 𝑖 is in 𝑂 then 𝑖 + 1 must be in 𝐼 .

We now describe the steps of the training procedure:
Step 1 Train 𝑁 for 𝐾 epochs. This step allows us to retain the benefits of the many random
initializations present in overparameterized networks and thus achieve high accuracy.
Step 2 Use PCA to calculate e𝑖 , 𝑉 𝑖 , and 𝝁𝑖 for each layer 𝑖 ∈ 𝐼 ; truncate 𝑉 𝑖 into 𝑈 𝑖 using the
variances e𝑖 and 𝐶 [𝑖], the compression configuration for layer 𝑖 .

Then, transform layers from 𝑁 into their PCN version (Steps 3-4). These steps have negligible
runtime compared to a single training epoch (Section D).
Step 3 For each layer 𝑖 ∈ 𝑂 we perform the output-based transformation.
Step 4 Transform all layers 𝑖 ∈ 𝐼 using the input-based transformation.
Step 5 Train the generated PCN for 𝑇 epochs. We do not update the PCA-basis transformation
matrices (𝑈 ) at each PCN layer. The trainable parameters are only the layer weight matrices (𝑊 )
and bias vectors (b). Training the PCN for the remaining epochs allows for more efficient training
compared to the overparameterized model.

4 EXPERIMENTS
We empirically validate the performance of PCNs against their overparameterized counterparts
and compare against structured pruning methods for model compression early in training.
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4.1 Experimental Setup
We first discuss the setup used throughout the experiments.
General Setup: Datasets, Models, Metrics, and Baselines We consider several architectures
including VGG-style CNNs [49] and ResNets [22] over CIFAR-10 [34] and ImageNet [48]. The CIFAR-
10 dataset consists of 50k train and 10k test 32x32 images split into 10 classes while ImageNet
contains 1.28M train and 50k validation images across 1k classes. We train all models from scratch.
To measure performance, we consider standard test accuracy metrics. We also evaluate the time
and energy improvements that PCNs introduce. Experiments on CIFAR-10 are averaged over at
least three runs. For ImageNet, we run each experiment only once for cost considerations. As a
baseline for structured pruning early in training, we use the method for identifying Early-Bird
Tickets from You et al. [59]. All experiments were executed using TensorFlow. We implement no
special optimizations and use only the high level TensorFlow Keras API. We run experiments using
AWS P3 instances with V100 GPUs.
Hyperparameters We use standard hyperparameters for each model and dataset combination.
I.e., we use existing learning rate schedules, batch sizes, data augmentation, etc. that are reported
in the literature [22, 23, 33, 49]. The exact architecture details and hyperparameters for each model
and dataset can be found Section E. For PCN hyperparameters (e.g., the transformation epoch and
the compression configurations) we use simple heuristics rather than performing hyperparameter
scans. Picking the optimal value for 𝐾 (the transformation epoch, Section 3.3) is a challenging
problem. Heuristically, we train the original overparameterized network so long as the validation
accuracy is increasing at a high rate (e.g., more than 5% per epoch). To decide which layers to
transform, we use the input-based transformation on the widest layers of each network until we
reach the desired compression ratio. For the transformation size of each layer, we use either a small
PCA variance threshold 𝜏 or set an explicit target effective dimensionality (Section 2.1). The latter
is useful for compressing layers in wide ResNet models, as we can explicitly chose parameters
so that the input width of compressed layers is equal to the original width of the corresponding
layer in a non-wide ResNet of the same depth. We use the output-based transformation only as an
optimization if the next layer’s input is an order of magnitude compressed after the input-based
transformation. PCN hyperparameter details can be found in Section E.

4.2 End-to-End Experiments
We now discuss end-to-end training results for PCNs and baseline structured pruning methods.
Results are reported in Tables 1-5. Where applicable, for each experiment we train all models for
the same total number of epochs and using the same hyperparameters. Next, we highlight key
takeaways among all end-to-end results before focusing on each setting (Table) in more detail.
Key Takeaways We summarize end-to-end results in Table 1. Although PCNs perform com-
pression early in training (between 8% and 21% of the total number of epochs), they consistently
reduce the number of trainable weights in overparameterized networks yet sacrifice little, if any,
accuracy. Our method extends from the comparatively simple CIFAR-10 dataset to the challenging
ImageNet dataset. For the former, we achieve comparable compression and accuracy improvements
to the original winning lottery tickets found in [11] (on Conv4 at 4% weights remaining both PCNs
and lottery tickets achieve 77% accuracy), but require no iterative train-prune-reset procedure.
For the latter, in one case we observe a reduction in parameters by 5.28×, while in the other case
we observe no loss in end-model accuracy. These small, if any accuracy drops are a common
characteristic of PCN models. The holistic layer-wise compression criteria used by PCNs allows
for higher end-model accuracy when compared to structured pruning methods based on localized
channel measurements (Table 5). We next discuss individual experiments in more detail.
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Table 1. Summary of results. Across both VGG-style and ResNet architectures, PCNs can reduce parameter
counts early in training while achieving high end-model accuracy. (Trans. Epoch = Transformation Epoch)

Dataset Network Trainable Parameters Accuracy PCN Parameters PCN Accuracy Trans. Epoch/Total Epochs

CIFAR-10 Conv4 2.43M 75.16 101k 77.25 2/20
CIFAR-10 WideResNet-20 4.33M 93.60 1.32M 93.52 15/182
ImageNet VGG-19 143M 70.99 27.2M 70.27 15/70
ImageNet WideResNet-50 98.0M 77.52 62.3M 77.64 16/90

Table 2. ResNet-50-PCNs trained on ImageNet compared to the original ResNet-50 model. PCN transforma-
tions are performed after epoch 18 out of 90.

Network Name Trainable Parameters
Center Crop Val. Acc. at Epoch 90

Top-1 Top-5

ResNet-50 25,557,032 75.60 92.78

ResNet-50-PCN0 22,919,720 75.53 92.79
ResNet-50-PCN1 20,421,160 75.32 92.71
ResNet-50-PCN2 17,835,048 75.15 92.63
ResNet-50-PCN3 12,897,320 73.96 91.87

We start by empirically validating the performance of PCNs against their overparameterized
counterparts. For these experiments, we train an overparameterized model to completion and report
the model size and end-model accuracy. We then compare against the end-model accuracy and
resulting model size of a corresponding PCN. We focus on ResNet models rather than VGG-style
networks, as they better approximate the state-of-the-art models used by practitioners.
ResNet-50 on ImageNet We report the results for ResNet-50 architectures and ResNet-50-PCNs
trained on ImageNet in Table 2. We use four different PCNs (PCN0-PCN3) representing 10, 20, 30,
and 50 percent trainable parameter reduction respectively. PCNs achieve near-matching top-1 and
top-5 accuracy as compression ratios increase from 10 to 30 percent. PCN accuracy, however, begins
to fall off more rapidly between 30 and 50 percent parameter reduction (PCN2 to PCN3). This occurs
for the following reason: In order to reach these higher compression ratios, we need to use the
input-based transformation on increasingly narrow layers in the ResNet-50 architecture (e.g., with
width less than or equal to 256 channels). The narrower layers get, the less suited they are for PCN
transformations as the effective dimensionality approaches the true layer width (Figure 2a). If we are
unable to reach a desired compression ratio, we are forced to increase PCA variance thresholds (𝜏 ) to
decrease effective dimensionalities (and thus increase compression). This is particularly important
for end-model accuracy, as the error of the PCN transformation with respect to the orignal layer is
proportional to the variance threshold. In fact, the observation that ResNet-50 architectures can not
be compressed by more than ∼ 30% without increasing PCA variance thresholds actually indicates
a profound strength of ResNet models: standard ResNet architectures generally use their available
dimensions in each layer quite well, i.e., these architectures are not heavily overparameterized
with respect to model width. As PCNs are better suited for wide layers, ResNet models provide a
challenging setting for our method. Yet, we show in Table 5 that PCNs considerably outperform
structured pruning methods with respect to end-model accuracy on ResNet models trained over
ImageNet.
Effect of Network Width As mentioned in the introduction, network width is a key quantity
associated with high-accuracy models [4, 46]. We now evaluate the hypothesis that wide networks
improve generalization and that PCNs are well suited to reduce the number of parameters in wide,
overparameterized models early in training while achieving near-matching accuracy. On both
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Table 3. WideResNet-20 PCNs trained on CIFAR-10 compared to the original WideResNet-20 model. We
include standard ResNet-20 and ResNet-110 models for additional comparison points. WideResNet-20 PCNs
can achieve ≥ 75% trainable parameter reductions while achieving high end-model accuracy (≥ 93.00). PCN
transformations are performed after epoch 15.

Network Name Total Parameters Trainable Parameters Test Acc. (Epoch 182)

ResNet-20 274,362 272,762 91.03
ResNet-110 1,739,322 1,731,002 92.94

WideResNet-20 4,338,378 4,331,978 93.60 (+0.07, -0.08)

WideResNet-20-PCN0 1,443,018 1,323,850 93.52 (+0.10, -0.07)
WideResNet-20-PCN1 1,223,114 1,094,154 93.23
WideResNet-20-PCN2 541,834 473,802 92.50

Table 4. Comparison of a WideResNet-50-PCN trained on ImageNet to the original WideResNet-50 model.
We include standard ResNet-50 and ResNet-152 models for additional comparison points. The WideResNet-
50-PCN achieves a 37% parameter reduction while achieving matching model accuracy (77.52%+). This model
outperforms a standard ResNet-152 with the same number of parameters. PCN transformations are performed
after epoch 16.

Network Name Total Parameters Trainable Parameters
Center Crop Val. Acc. at Epoch 90

Top-1 Top-5

ResNet-50 25,610,152 25,557,032 75.60 92.78
ResNet-1521 60,344,232 60,192,808 77.00 93.30

WideResNet-50 98,110,312 98,004,072 77.52 93.92

WideResNet-50-PCN 71,936,872 62,375,016 77.64 93.85

CIFAR-10 and ImageNet, we train wide ResNet architectures—networks identical to the original
ResNets [22], but withmore filters at each layer.We compare these networks and their corresponding
PCNs with conventional deep ResNet models. Results are shown in Tables 3 and 4. For CIFAR-10 we
show three different PCNs with increasing amount of compression and include three-run max/min
for WideResNet-20 and WideResNet-20-PCN0 as the accuracy difference between these models
falls within the error bars.
We find that wide networks improve accuracy compared to standard ResNet models and that

they can outperform deep ResNet models. On CIFAR-10, the WideResNet-20 model achieves 93.6%
accuracy, outperforming a standard ResNet-20 (91.03%) and a deep ResNet-110 (92.94%). Similar
results hold for the WideResNet-50 model on ImageNet. We also find that PCNs can reduce the
number of parameters in these wide models while retaining their test accuracy. On CIFAR-10, both
PCN0 and PCN1 exceed the accuracy of a deep ResNet-110 with less parameters. PCN0 achieves
near-matching accuracy to the WideResNet-20 with only 30% of the trainable parameters. On
ImageNet, our PCN achieves matching accuracy with 63% of the original weights and outperforms
a ResNet-152 containing a comparable number of trainable parameters. Moreover, Tables 3 and
4 show that wide networks can be converted into PCNs early in training. The transformation
occurs at epoch 15 out of 182 on CIFAR-10 and epoch 16 out of 90 on ImageNet. We evaluate the
potential for these parameter reductions early in training to reduce the computational costs of
training in the following paragraphs. In summary, we have shown that PCN transformations of
wide, overparameterized models are well suited to achieve high end-model accuracy with reduced
parameter overhead.

1Accuracy reported from https://github.com/kaiminghe/deep-residual-networks.
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Performance: Training Time and Energy We next highlight that by reducing parameter
counts early in training, PCNs have the potential to significantly lower the time and energy
required to learn high-accuracy models. For these results, we calculate energy usage by integrating
nvidia-smi power measurements. Before discussing results, however, we note the following: Our
current implementation uses standard GPU kernels for existing neural network layers. For best
performance, new GPU kernels and training procedures are required which optimize the PCN
basis transformation at each layer (multiplication with fixed parameters𝑈 ) together with the layer
itself (multiplication/convolution with learnable weights𝑊 ). For example, note that performant
kernels for convolution fuse zero-based input padding together with compute, reading a batch
of image data from memory only once. In contrast, using existing kernels, our implementation
must manually pad2, then multiply by𝑈 , then perform convolution, a process which requires three
memory I/O operations (memory access is known to bottleneck training [6]). Moreover, optimal
training in the presence of fixed and trainable parameters is not well studied. In particular, how
can existing neural network frameworks (e.g., TensorFlow) improve energy efficiency and runtime
for parameters which do not require gradients (e.g., quantization, caching, etc.)? We leave the
implementation of custom kernels and optimized frameworks for combining fixed and learnable
parameters as well as a detailed analysis of the PCN training time and energy cost reductions for
future work. In the following paragraph, however, we highlight existing results that offer promising
evidence for the potential of PCNs to reduce the computational costs of training high-accuracy
models.

Without an optimized GPU kernel, we already see performance improvements for training. For
example, end-to-end training of WideResNet-20-PCN1 on CIFAR-10 uses 15% less total energy
compared to end-to-end training of the full WideResNet-20 and 27% less energy than end-to-end
training of the deep ResNet-110 network. At the same time, the end-to-end training time of the
PCN (44.73 minutes) is 10% and 50% faster than these models respectively (49.47 and 90.12 minutes).
We believe the fact that wide ResNet PCNs can train faster and achieve higher accuracy than deep
ResNet models is an important takeaway from this work. Furthermore, performance improvements
extend to inference time: e.g., on ImageNet, our unoptimzed PCN reduces the time to compute the
validation set predictions (36s) by 47% compared to the deep ResNet-152 (66s). Yet the WideResNet-
50-PCN achieves the highest accuracy of these two models. As described above, we expect a fused
PCN kernel and framework optimizations could significantly improve the energy consumption
and training time benefits of PCNs. Finally, we also note here that the PCN transformation overhead
is negligible and does not prevent the training time reductions which arise from using the smaller
network for the bulk of the training epochs (Section D).
Comparison To Structured Pruning While we have primarily focused so far on comparing
PCNs to their overparameterized counterparts, we conclude this section by comparing them
directly to other methods for compressing models early in training. We focus on methods which
use structured pruning techniques as they, like PCNs, produce compressed models with dense
architectures that can be easily accelerated using GPUs. As our structured pruning baseline we
use the method for drawing Early Bird Tickets from You et al. [59]. We do not compare directly to
iterative train-prune-reset procedures for finding sparse lottery tickets. While these approaches
generally lead to the highest compression ratios (e.g., [12]), methods for finding sparse subnetworks
are expensive (they require paying the full training cost of the original model each iteration) and
the resulting sparse architectures are not well suited for modern GPU hardware (they actually add
computation to the original model rather than reduce it, as individual weight pruning is generally

2When transforming a convolution layer, the padding also needs to be transformed (multiplied by𝑈 ), or the convolution
kernel needs to support non-zero-based padding. See Section B for more details.
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Table 5. Comparison of the accuracy relative to the overparameterized model for PCNs and Early Bird Tickets
at different reductions in trainable parameters. We use a ResNet-50 on ImageNet as the base model. PCNs
achieve accuracy closer to the original model compared to the structured pruning method used to find Early
Bird Tickets.

Method Parameter Reduction
Center Crop Val. Acc. at Epoch 90

Top-1 Top-5

- 0% 75.60 92.78

PCN 30% 75.15 92.63
EB 30% 73.87 91.32

PCN 50% 73.96 91.87
EB 50% 73.36 91.16

implemented by multiplying the original weight matrices by added binary mask matrices). Thus
the practical potential of such methods is currently limited.
We compare the accuracy of overparameterized models, PCNs, and Early Bird Tickets using

ResNet-50 architectures on ImageNet. Results are shown in Table 5. Recall that compressing ResNet-
50 models is a challenge for the PCN transformations. Yet, our PCN models consistently achieve
end-model accuracy closer to the original ResNet-50 when compared to Early Bird Tickets with the
same parameter reduction. The reason for this is that structure pruning techniques (like those used
to find Early Bird Tickets) make pruning decisions using only localized measurements (e.g., data
from individual channels). In contrast, PCNs use holistic layer-wise measurements for pruning
decisions (keeping only the high-variance linear combinations of channels) allowing them to
better capture the information relevant to the generalization accuracy. The advantage of localized
pruning decisions, however, is that the pruned channels can be easily removed from the network
without any additional overhead. On the other hand, PCNs introduce the need to compute the
linear combinations of channels (multiplication by 𝑈 ) in order to perform pruning. As such, Early
Bird Tickets currently lead to an improved reduction in model compute. For example, an Early Bird
Ticket with 50% trainable parameter reduction reduces the total training FLOPs by 39% compared
to a 14% drop in total training flops for the corresponding PCN. As discussed above, optimizing
the PCN basis transformation (multiplication by 𝑈 ) is an open area of future work. We believe
with new GPU kernels, the PCN overhead (dominated by memory access to image data rather
than compute) can be reduced, allowing the end-to-end computational improvements of PCNs to
approach those of structured pruning methods. In the discussion section below, we also discuss
potential areas of future work on combining the strengths of both methods.

4.3 Microbenchmarks
We evaluate the sensitivity of PCNs with respect to 1) the transformation epoch and 2) the variance
threshold for the input-based transformation. For this experiment, we use the simple Conv4
network [11] (to allow us to vary many parameters), a VGG-style CNN adapted to CIFAR-10. It
contains four convolution layers followed by three dense layers. In Figure 5a we plot PCN test
accuracy at early stopping—early stopping is defined here as the epoch of peak validation accuracy—
versus the transformation epoch using four different variance threshold configurations. Variance
cutoffs are represented using tuples corresponding to (variance threshold for convolution layers,
variance threshold for dense layers). The baseline accuracy, i.e. training the original Conv4 network,
is shown as a horizontal line.

We find that training PCNs is robust to both the transformation epoch and the variance thresholds
(so long as the variance thresholds are low); All configurations in Figure 5a reach high end-model
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(a) Robustness of PCN transformations.
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Fig. 5. Evaluation of the sensitivity of PCNs with respect to 1) the transformation epoch and 2) the variance
threshold for the input-based transformation using the simple Conv4 network. We list variance thresholds
using tuples corresponding to (variance threshold for convolution layers, variance threshold for dense layers).
(a) PCNs achieve high end-model accuracy across varying transformation epochs and variance thresholds. (b)
We investigate the origins of the accuracy improvement for Conv4-PCNs compared to the baseline Conv4
model and find that PCNs help to regularize and prevent overfitting in layers with many weights (in this case
the first fully connected layer (fc1)).

accuracy. In the best case, the Conv4-PCN improves upon the Conv4 accuracy by 3%. Furthermore,
we see that the transformation can be performed early—in this case after one epoch. For reference,
training requires up to 20 epochs depending on early stopping.

To understand why Conv4-PCNs train to a higher test accuracy than the Conv4 network, we ran
a set of ablation experiments. When converting the Conv4 network into the Conv4-PCN, instead of
transforming all layers using the input-based transformation, we transformed all layers except one.
The layer not transformed is shown on the 𝑥-axis of Figure 5b. The test accuracy of the resulting
PCNs is shown on the 𝑦-axis. For each PCN, we show four bars labeled by a tuple representing
the variance threshold for convolution layers that were compressed, the variance threshold for
dense layers that were compressed, and the epoch at which we performed the transformations.
Omitting the transformation for the first fully connected layer (fc1) causes the accuracy to drop
much closer to the baseline (75.16). Omitting the transformation for other layers does not change
the PCN accuracy. From this ablation experiment, we conclude that the accuracy improvement of
the Conv4-PCN comes from transforming the first dense layer. We conclude that by compressing
the first dense layer—a layer which contains 86% of the original weights—the Conv4-PCN helps to
regularize and prevent overfitting.

While the significant accuracy improvements of the PCN models in the above microbenchmarks
does not extend to more complex models like ResNets (as these models do not suffer heavily from
overfitting like the Conv4 network does), we find that the above takeaway—that PCNs can help to
regularize overparameterized models and improve generalization—does extend beyond the Conv4
model. In particular, we notice that the generalization gap, i.e., the difference between the train
and test accuracy, consistently decreases for PCN models compared to the original networks. For
example, the difference between the train and test accuracy for a WideResNet-50 on ImageNet is
6%, while the generalization gap for our WideResNet-50-PCN is only 2.5%.

5 DISCUSSION AND FUTUREWORK
While we have primarily focused on how the observations in Section 2.2 can be used to reduce
model size early in training, in this section we briefly discuss the implications of our observation
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more generally and highlight areas for future work. We start by discussing future work in model
compression and resource-efficient training, then focus on how our observation—that hidden layer
activations exist in low-dimensional subspaces—connects to feature representations learned by
neural networks as well as model robustness and accuracy.
Given the large number of recent works that study methods to reduce the computational cost

of training (many of which utilize model compression), we believe an important area of future
work is to focus on the following question:What is the best way to train neural networks under a
certain objective, e.g., lowest energy consumption to achieve a certain accuracy? In a related manner,
how can we synthesize the suite of existing compression methods, many of which have different
advantages? Namely, while we have shown that PCNs have several performance benefits (e.g.,
the transformed PCN models are dense and can train to high end-model accuracy) other pruning
techniques (sparse pruning, structured pruning, etc.) also provide advantages (see the Comparison
to Structured Pruning in Section 4.2). For example, sparse pruning based methods [11] can often
achieve the highest compression ratios for a given accuracy. This is likely to be particularly useful
for certain objectives, e.g., those which care about the parameter overhead, but potentially harmful
for others, e.g., those which care about the end-to-end computational cost of training. Moreover,
we believe it is also of interest to study why each of these methods achieves their respective
performance, primarily accuracy, in an effort to better understand the role of sparsity in deep
learning more generally [13, 26]. Combining the observations of existing methods for compression
early in training is likely to lead to both improved methods for reducing end-to-end training costs
for a given accuracy and to a better understanding of training dynamics.

As described in the preceding paragraph, in addition to reducing the computational cost associated
with training overparameterized models, we are also interested in the potential insights of PCNs
into the learning dynamics of deep neural networks. As such, for the remainder of this section
we discuss potential implications and areas for future work related to our underlying observation:
hidden layer activations are grouped into low-dimensional subspaces early in training, and remain
as such in fully trained networks. Recall that these hidden layer subspaces do not correspond to
subsets of the activations at each layer, but rather to linear combinations, i.e., superpositions, of
the activations. The fact that these superpositions still lead to high end-model accuracy means
that they must capture important features related to the data and the learning task. Recent work
by Elhage et al. [9] also finds that models often store features in superposition given "relatively
natural setups, suggesting this may also occur in practice". We believe their results along without
our observations may be of broad interest for future work.

If linear combinations of hidden layer activations are connected to the features learned by neural
networks, our observations may lead to interesting opportunities for future work in areas such as
adversarial examples, model robustness, and improved model accuracy. Specifically, how do we
utilize this information to design more robust models? Can these observations lead to methods to
prevent adversarial attacks? Are these superposition features transferable? Why does the number
of superposition features stop increasing after the early phase of training? Can we continue to add
new features in the latter phase of training to improve model performance? Can we use information
about learned features to do better routing for mixture-of-expert models [10], thus achieving higher
accuracy? We encourage further research and understanding of these questions.
Finally, we conclude by highlighting the strong connection between our observation and the

observation by Gur-Ari et al. [18] that: the neural network’s gradient "dynamically converges
to a very small subspace after a short period of training. The subspace is spanned by a few
top eigenvectors of the Hessian ... and is mostly preserved over long periods of training". Our
observation closely mirrors this statement, but focuses on hidden layer activations rather than
gradients. We believe that these two observations are likely highlighting the same training behavior,
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with one observing these dynamics during the forward pass and one during the backward pass.
This connection adds additional intrigue to the above questions about network features etc., but
also introduces additional questions such as those surrounding the optimization algorithms used
for learning. As such, while we have focused in this work on the implication of low-dimensional
hidden layer activations on compression during early training, we believe this observation is of
independent interest to the machine learning community and are particularly excited about the
results of this observation in future research.

6 RELATEDWORK
A large body of work has focused on reducing the number of parameters and associated computa-
tional cost of overparameterized neural networks. To benefit model inference, pruning [19, 20, 24, 28,
37, 38, 50, 58], distillation [2, 25], quantization [16], and weight decomposition [8, 31, 32, 35, 57, 60]
are performed after training. Specifically engineered networks [27, 29], binary weights [61], and
low-rank [7] architectures help lessen model size from the start, while other works aim to sparsify
networks during the learning process [1, 42, 44, 45, 51–53, 55, 56]. Additional works try to identify
subnetworks contained in large models that can train on their own to high accuracy [11, 47, 59].
We discuss works related to our paper in more detail.
After Training The compression works of [14, 43] relate the most to the transformations we
use in Section 3. Luo et al. [43] prune a subset of filters at layer 𝑖 based on how accurately layer 𝑖 + 1
can produce its output. In contrast, our output-based transformation prunes a subset of filters based
on how accurately the next layer can write its input in the high-variance PCA subspace. PCNs
additionally transform overparameterized layers using our input-based transformation (Section 3.1)
and can perform these transformations early in training (rather than only after training finishes).
Garg et al. [14] find that CNN hidden layer activations exist in low dimensional spaces after training
completes. Based on this, they use PCA on the hidden layer activations to determine the optimal
width of each layer and the optimal depth of a pre-trained network. They then retrain a new
network with the optimal dimensions from scratch. Chen et al. [5] observe similar properties for
trained NLP models. Contemporaneous to the preparation of this work, Li et al. [40] highlight the
activation sparsity in trained transformers. In this work, we find these observation hold during
training and show how to use PCA during the learning process to dynamically reduce network
size and thus provide the potential to reduce end-to-end training costs.
Before Training Denil et al. [7] represent weight matrices using products of low-rank factors.
They fix one factor to contain the layer basis and train the other. To construct the basis vectors,
they propose to use prior knowledge or to pre-train layers as autoencoders and use the empirical
covariance for kernel ridge regression. While PCNs also represent layer weight matrices using a
fixed basis factor, together with a trainable matrix, the key difference is that we do not impose this
structure at the start. Instead we allow the first training epochs of an overparameterized model to
identify an appropriate high-variance basis of hidden activations and use PCA to find it. We then
directly use this basis and rewrite the weight matrix in the corresponding subspace.
Subnetwork Identification Frankle and Carbin [11] show the existence of small, sparse sub-
networks embedded in overparameterized models that, when trained in isolation, meet or exceed
the accuracy of the full model. They introduce an iterative train-prune-reset procedure to identify
such subnetworks. In place of sparse subnetworks, we show how to find smaller, dense versions of
base networks, and we show how to do this early in a single training procedure. Eliminating the
iterative train-prune-reset loop allows us to scale to large datasets such as ImageNet and realize
end-to-end training cost reductions. You et al. [59] identify subnetworks early in training using
one-shot structured pruning techniques. Such methods have the advantage of producing dense
architectures (like PCNs) which are hardware friendly, but use localized channel measurements for
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pruning. We show in Section 4 that the holistic layer-wise pruning criteria used by PCNs allows
our compressed models to achieve higher end-model accuracy. Wang et al. [55] also use holistic
layer-wise pruning early in training but focus on finding low-rank decompositions of each weight
matrix, rather than on activations as we do. Together PCNs and Wang et al. [55] show that both
hidden layer activations (PCNs) and weights [55] exhibit low-rank structures. Finally, Ramanujan
et al. [47] find a subset of random weights in an overparameterized model which achieve good
generalization performance without any modification (i.e., training), but these randomly weighted
subnetworks do not match the accuracy obtained by training the base model. In this work, we
focus on methods for resource-efficient training of high-accuracy neural networks.

7 CONCLUSIONS
In this paper, we show that early in the training process, overparameterized networks can be
transformed into smaller versions that can train to the same, or similar accuracy, as the original
model. We focus on hidden layer activations rather than model weights, and observe that they exist
primarily in subspaces an order of magnitude smaller than the actual network width. We further
observe that these subspaces, which contribute most to the generalization accuracy of the network,
can be identified early in training. This motivates us to introduce Principal Component Networks,
resource-efficient deep learning architectures which represent layer weights using the high-variance
subspaces of their input and output activations.We demonstrate that PCNs are applicable to a diverse
set of neural networks, including traditional dense neural networks, convolutional neural networks,
and residual neural networks. We experimentally validate the ability of PCNs to reduce parameter
counts early in training and to reach similar end-model accuracy as their overparameterized
counterparts, thus providing the potential to reduce the end-to-end computational costs of training
high-accuracy models. We further show that the the holistic layer-wise pruning criteria used by
PCNs allows our transformed networks to reach higher end-model accuracy than those found by
structured pruning techniques which use localized channel measurement based pruning criteria.
Finally, we discussed the connections between our observations regarding hidden layer activations
and the features learned by deep neural networks and posed questions for future work on model
robustness and techniques for learning high-accuracy models.
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APPENDIX
A INPUT- AND OUTPUT- BASED TRANSFORMATION ORDER
We discuss technical details regarding the order of the input- and output-based transformations.
1. We calculate the PCA basis (𝑈 ) for each layer before performing any transformations. That is,
we use the original network’s hidden activations rather than first transforming layer 𝑖 and then
using its approximate outputs to compute PCA at layer 𝑖 + 1. This choice allows us to calculate
PCA at each layer using a forward pass through the original network.
2. Given 𝑈 𝑖+1, the order of the input and output-based transformation at layer 𝑖 does not matter.
Pruning columns of𝑊 𝑖 and entries of b𝑖 then transforming to �̃� 𝑖 and b̃𝑖 is the same as first
transforming to �̃� 𝑖 and b̃𝑖 and then pruning these transformed variables.
3. The order of the output-based transformation at layer 𝑖 and the input-based transformation at
layer 𝑖 +1 does matter. Suppose we already performed the input-based transformation at layer 𝑖 , and
we now plan to perform the output-based transformation at layer 𝑖 . As described in the main body
of the paper, to do so we 1) find the subset 𝑆 ⊆ [1 . . . 𝑛] with highest row-wise 𝐿1 norm in 𝑈 𝑖+1

and 2) prune columns of �̃� 𝑖 , entries of b̃𝑖 , entries of 𝝁𝑖+1, and rows of𝑈 𝑖+1 with indices in 𝑆𝐶 . The
question is then: do we use the truncated 𝝁𝑖+1 and𝑈 𝑖+1 to calculate�̃� 𝑖+1 and 𝑏𝑖+1 in the input-based
transformation at layer 𝑖 + 1? Or do we first calculate �̃� 𝑖+1 and 𝑏𝑖+1 and then truncate 𝝁𝑖+1 and
𝑈 𝑖+1? In the first case, we must also remove rows in𝑊 𝑖+1 with indices in 𝑆𝐶 so that dimensions
match when performing the transformation.

Performing the input-based transformation at layer 𝑖+1 before truncating 𝝁𝑖+1 and𝑈 𝑖+1 according
to the output-based transformation at layer 𝑖 means that�̃� 𝑖+1 and 𝑏𝑖+1 are written in the unmodified
high-variance PCA subspace. On the other hand, outputs of layer 𝑖 which are no longer part of
the network contribute to these directions. Currently, we truncate first, and then perform the
input-based transformation at layer 𝑖 + 1. In the future, we plan to study the performance of each
ordering.
Summary Given a compression configuration 𝐶 [𝑖] for layer 𝑖 , we perform the transformations
as follows:

𝑊 𝑖 , b𝑖 , 𝝁𝑖+1,𝑈 𝑖+1,𝑊 𝑖+1 ← OutputTransformation(𝑊 𝑖 , b𝑖 , 𝝁𝑖+1,𝑈 𝑖+1,𝑊 𝑖+1,𝐶 [𝑖])
�̃� 𝑖 , b̃𝑖 ← InputTransformation(𝑊 𝑖 , b𝑖 , 𝝁𝑖 ,𝑈 𝑖 ).

B TRANSFORMATIONS FOR CONVOLUTIONAL LAYERS
Weprovide technical details to extend the discussion on transforming convolutional layers presented
in the main body of the paper.

Consider a convolutional layer:

𝐻 𝑖+1
ℎ′×𝑤′×𝑛 = 𝜎 (𝐻 𝑖

ℎ×𝑤×𝑚 ∗𝑊
𝑖
𝑘1×𝑘2×𝑚×𝑛 + b

𝑖
𝑛)

where ℎ and𝑤 describe the size of the input data,𝑚 is the number of input filters, 𝑘1 × 𝑘2 is the
kernel size, and 𝑛 is the number of output filters.
PCA for Images Given a batch of 𝑁 input images to layer 𝑖 , compute PCA as follows:
(1) 𝐻 𝑖

𝑁 ′×𝑚 = Flatten(𝐻 𝑖
𝑁×ℎ×𝑤×𝑚)

(2) 𝝁𝑖𝑚, e𝑖𝑚,𝑉 𝑖
𝑚×𝑚 = PCA(𝐻 𝑖

𝑁 ′×𝑚)
Input-Based Transformation Transform an input image to the PCA version as so:
(1) 𝐻 𝑖

(ℎ×𝑤)×𝑚 = Flatten(𝐻 𝑖
ℎ×𝑤×𝑚)

(2) �̃� 𝑖
(ℎ×𝑤)×𝑚𝑒

= (𝐻 𝑖
(ℎ×𝑤)×𝑚 − 𝝁

𝑖
𝑚)𝑈 𝑖

𝑚×𝑚𝑒
(subtraction applies to all rows)

(3) �̃� 𝑖
ℎ×𝑤×𝑚𝑒

= Reshape(�̃� 𝑖
(ℎ×𝑤)×𝑚𝑒

)
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You can transform a batch of images all at once by flattening𝐻 𝑖
𝑁×ℎ×𝑤×𝑚 . Note that if the original layer

performed zero padding, then the padding should be included in the transformation. Either𝐻 𝑖
ℎ×𝑤×𝑚

should be zero padded and then transformed, in which case no additional padding is required when
performing convolution, or channel 𝑗 of �̃� 𝑖

ℎ×𝑤×𝑚𝑒
should be padded with (−𝝁𝑖𝑚𝑈 𝑖

𝑚×𝑚𝑒
) [ 𝑗] during

convolution.
Transform the weights𝑊 𝑖 by:
(1) 𝑊 𝑖

𝑛×𝑚×(𝑘1×𝑘2) = Reshape(𝑊 𝑖
𝑘1×𝑘2×𝑚×𝑛)

(2) �̃� 𝑖
𝑛×𝑚𝑒×(𝑘1×𝑘2) = BatchMatrixMultiply((𝑈 𝑖

𝑚×𝑚𝑒
)𝑇 ,𝑊 𝑖

𝑛×𝑚×(𝑘1×𝑘2) )
(3) �̃� 𝑖

𝑘1×𝑘2×𝑚𝑒×𝑛 = Reshape(�̃� 𝑖
𝑛×𝑚𝑒×(𝑘1×𝑘2) )

Transform the bias b𝑖 by:
(1) 𝑊 𝑖

𝑛×𝑚×(𝑘1×𝑘2) = Reshape(𝑊 𝑖
𝑘1×𝑘2×𝑚×𝑛)

(2) 𝑇𝑛×(𝑘1×𝑘2) = BatchMatrixMultiply(𝝁𝑖𝑚,𝑊 𝑖
𝑛×𝑚×(𝑘1×𝑘2) )

(3) b̃𝑖𝑛 = b𝑖𝑛 + ReduceSum𝑎𝑥𝑖𝑠=1 (𝑇𝑛×(𝑘1×𝑘2) )
The resulting convolutional layer, transformed based on the input hidden activations, computes

an approximate output image:

�̂� 𝑖+1
ℎ′×𝑤′×𝑛 = 𝜎 (�̃� 𝑖

ℎ×𝑤×𝑚𝑒
∗ �̃� 𝑖

𝑘1×𝑘2×𝑚𝑒×𝑛 + b̃
𝑖
𝑛).

Instead of containing𝑚 filters, the input images contain only𝑚𝑒 filters of high variance. Only the
weights which act on these filters remain in �̃� 𝑖 .
Output-Based Transformation Just as in Section 3.1 for dense layers, we use the 𝐿1 norm
of row 𝑙 in 𝑈 𝑖+1 to determine the importance of the 𝑙𝑡ℎ output filter of layer 𝑖 . Given the subset
𝑆 ⊆ [1 . . . 𝑛] of indices with highest row-wise 𝐿1 norm in 𝑈 𝑖+1, we can prune filters from layer 𝑖
with indices in 𝑆𝐶 . As before, we must also update 𝝁𝑖+1,𝑈 𝑖+1, and𝑊 𝑖+1. We include the dimensions
below for clarity on what is pruned in the higher dimensional tensors (assuming we already did
the input transformation at layer 𝑖):

�̃� 𝑖
𝑘1×𝑘2×𝑚𝑒×|𝑆 |, b

𝑖
|𝑆 |, 𝝁

𝑖+1
|𝑆 | ,𝑈

𝑖+1
|𝑆 |×𝑛𝑒 ,𝑊

𝑖+1
𝑘′1×𝑘′2×|𝑆 |×𝑜

.

When performing the output-based transformation to a convolutional layer 𝑖 which is followed
by a dense layer in the original network, additional steps need to be taken. In this case, the output
of layer 𝑖 , 𝐻 𝑖+1

ℎ′×𝑤′×𝑛 , is flattened to h𝑖+1(ℎ′×𝑤′×𝑛) . Thus, 𝑈
𝑖+1 has (ℎ′ × 𝑤 ′ × 𝑛) rows instead of 𝑛

rows. To determine the importance of the 𝑙𝑡ℎ output filter, we add together the 𝐿1 norm of each
of the corresponding (ℎ′ × 𝑤 ′) rows in 𝑈 𝑖+1. Pruning a single filter then requires removing all
corresponding (ℎ′ × 𝑤 ′) entries in 𝝁𝑖+1, rows in 𝑈 𝑖+1, and rows in𝑊 𝑖+1 (which is just a matrix
again).

C TRANSFORMATIONS FOR RESNETS
The input-based convolutional transformation can be directly applied to all layers in a given ResNet.
Here, we discuss the additional constraint we impose to perform the output-based transformation.
Consider the partial ResNet diagram shown in Figure 6. We show a stage with three blocks

followed by the first block of the next stage. Convolutional layers are depicted using the tuple
(filters, kernel size/strides). Typically, 𝑆 = 2 to downsample the image at the beginning of each stage.
We omit batch normalization [30] and activation layers for brevity. All layers [0, 9] can perform
the input-based transformation without affecting any other layers. Note that Layers 0 and 1 share
the same input activations and thus𝑈 0 = 𝑈 1. The same is true for Layers 7 and 8.
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Fig. 6. ResNet Illustration.

We discuss the output-based transformation for layers in the first stage, i.e. layers [0, 6]. First
note that Layers 1, 3, and 5 can perform the output-based transformation as if they were in a
standard convolutional neural network. Since the output filters of Layers 0, 2, 4, and 6 are added
together, we enforce the constraint that if these layers are to prune filters, they must prune the
same filters.

To decide which filters to prune, we no longer have only one𝑈 𝑖+1. Instead,𝑈 3,𝑈 5, and𝑈 7 = 𝑈 8

all provide information regarding the importance of specific filters. For the 𝑙𝑡ℎ filter of Layers 0, 2, 4,
and 6, we use the average 𝐿1 norm of the 𝑙𝑡ℎ rows in𝑈 3, 𝑈 5, and 𝑈 7 as the influence measurement.
Given this criteria, we can perform the output-based transformation for the even layers in the first
stage. Just as 𝝁𝑖+1,𝑈 𝑖+1, and𝑊 𝑖+1 are updated in the standard output-based transformation, here
we must update 𝝁,𝑈 , and𝑊 for layers 3, 5, 7, and 8.

D TRANSFORMATION OVERHEAD
We discuss the overhead required to convert a network into its corresponding PCN version. In
general, the transformation time is negligible compared to the overall training procedure. The
primary bottleneck for the transformation is computing hidden layer activations, which require
partial forward passes through the original network. That said, however, only a small fraction of the
training data is needed for sufficient PCA statistics. Thus, PCN conversion typically requires much
less compute than one training epoch. On CIFAR-10, we transform WideResNet-20 architectures in
≈ 3s while a single training epoch takes ≈ 17s. On ImageNet, PCN conversion can be performed an
order of magnitude faster than training one epoch. A single GPU transforms a WideResNet-50 in
half an hour yet it takes the same time for eight GPUs to execute one epoch.
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Table 6. Network architectures for CIFAR-10.

Name Conv4 [11] ResNet-20 [22] ResNet-110 [22] WideResNet-20

Conv Layers 64, 64, M
128, 128, M

16
3x[16, 16]
3x[32, 32]
3x[64, 64]

16
18x[16, 16]
18x[32, 32]
18x[64, 64]

64
3x[64, 64]
3x[128, 128]
3x[256, 256]

FC Layers 256, 256, 10 A, 10 A, 10 A, 10

Table 7. Network architectures for ImageNet.

Name VGG-19 [49] ResNet-50 [22] ResNet-152 [22] WideResNet-50

Conv
Layers

2x64, M
2x128, M
4x256, M
4x512, M
4x512, M

64, M
3x[64, 64, 256]
4x[128, 128, 512]
6x[256, 256, 1024]
3x[512, 512, 2048]

64, M
3x[64, 64, 256]
8x[128, 128, 512]
36x[256, 256, 1024]
3x[512, 512, 2048]

128, M
3x[128, 128, 512]
4x[256, 256, 1024]
6x[512, 512, 2048]
3x[1024, 1024, 4096]

FC Layers 2x4096, 1000 A, 1000 A, 1000 A, 1000

E NETWORK ARCHITECTURES AND TRAINING DETAILS
In this section, we present details on the architectures and training procedures used in the main
body of the paper.
CIFAR-10 Network Architectures Parent networks for CIFAR-10, before transforming to
PCN versions, are given in Table 6. Convolutional layers use 3 × 3 kernels unless otherwise
stated. Numbers represent filters/neurons, M represents 2 × 2 max pooling, and A represents filter-
wise average pooling. Brackets denote residual blocks, with the multiplier out front denoting the
number of blocks in the residual stage. All layers use ReLU activation, except the last dense layers
where we use Softmax, and all convolutional layers use zero-based “same” padding. For ResNet
architectures, we use the original versions presented in [22]. That is, we adopt batch normalization
after convolution. Convolution layers in ResNets do not use a bias. While not explicitly necessary
in the first stage, for symmetry we always use a projection shortcut (1 × 1 convolution) at the first
residual block in each stage. Downsampling is performed by stride two convolutions in the first
block of stages two and three.
ImageNet Network Architectures Parent networks for ImageNet are shown in Table 7. Nota-
tion is the same as for CIFAR-10 above. For ResNet architectures, initial convolution layers use 7× 7
kernels with stride two and initial max pooling layers uses 3 × 3 pooling with stride two. We use
bottleneck blocks [22] where the first and third convolution use 1 × 1 kernels and only the middle
layer uses 3 × 3 kernels. As for ResNets on CIFAR-10, we use projection shortcuts at the beginning
of every stage. We follow the widely adopted implementation which performs downsampling using
stride two convolutions at the 3 × 3 convolutional layers in bottleneck blocks rather than the first
1 × 1 layer.
Training Conv4 on CIFAR-10 For all experiments, we train the parent Conv4 model and
the Conv4-PCNs in the same manner. Specifically we use a batch size of 60, Adam [33] optimizer
with default TensorFlow learning rate 0.001, cross-entropy loss, and when applicable 5000 random
training samples for computing PCA statistics. Since the network and dataset are small, we can
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compute PCA for all required layers using a single forward pass with batch size 5000. We train on
a random 45k/5k train/val split (different each run) and train for a maximum of 20 epochs. When
applicable, early stopping is defined as the epoch of maximum validation set accuracy. We evaluate
on the test set and run each experiment five times. When shown, error bars correspond to five
run max/min values, otherwise values correspond to five run mean. We do not use any dataset
preprocessing. Experiments were run on a machine with one NVIDIA Tesla V100 GPU.

The Conv4-PCN reported in the main text summary of results (with 101,810 trainable parameters)
was created using the following compression configuration: conv1:(None, 40), conv2:(20, 50),
conv3:(40, 100), conv4:(80, 60), fc1:(50, 90), fc2:(40, 180), output:(30, None).
Tuples for each layer represent the effective dimensionality for the input-based transformation and
the number of dimensions to keep for the output-based transformation respectively. For this PCN,
we perform compression after epoch two.
Training ResNet on CIFAR-10 We use data augmentation as reported in [22]. Namely, “4
pixels are padded on each side, and a 32 × 32 crop is randomly sampled from the padded image
or its horizontal flip. For testing, we only evaluate the single view of the original 32 × 32 image”.
Additionally, we standardize each channel by subtracting off the mean and dividing by the standard
deviation computed over the training data. As for the Conv4 network, we use a 45k/5k train/val split
and 5000 samples for compression. Again, a single forward pass suffices for computing PCA statistics.
We do not use data augmentation for compression samples. We follow the hyperparameters reported
in [22]: We train for 182 total epochs using a batch size of 128 and an initial learning rate of 0.1 which
we drop by a factor of 10 after epochs 91 and 136. For ResNet-110 we use a 0.01 learning rate warm
up for the first epoch. We use SGD with momentum 0.9, cross-entropy loss, and 𝐿2 regularization
coefficient of 5 ∗ 10−5 for CNN and dense weights. Note that because TensorFlow incorporates 𝐿2
regularization into the total loss, after taking the derivative the coefficient for weight decay becomes
1 ∗ 10−4. This matches they weight decay used in different implementations. We do not use weight
decay for batch normalization parameters. For CNN layers, we adopt he-normal/kaiming-normal
initialization [21]. We run each experiment three times and report the average test accuracy after
epoch 182. Experiments were again run on a machine with one NVIDIA Tesla V100 GPU.

To create the WideResNet-20-PCN0, we use the input-based transformation for all convolutional
layers in stages two and three of WideResNet-20 (except the first convolution and projection
shortcut in stage two). We use a fixed effective dimensionality of either 32 or 64, corresponding
to the input dimension of the respective layer in a ResNet-20. For WideResNet-20-PCN1, we use
the input-based transformation for all CNN layers in all residual blocks. As for PCN0, we use an
effective dimensionality of 16, 32, or 64, the equivalent input dimension of each layer in a ResNet-20.
For WideResNet-20-PCN2, we further compress PCN1 by using the input-based transformation
for the dense layer (effective dimensionality 64) and the output-based transformation for all CNN
layers in stage three (retaining 64 out of 256 filters).
Training VGG on ImageNet We adopt the basic training procedure from the original paper [49].
For train set data augmentation, we randomly sample a 224 × 224 crop from images isotropically
rescaled to have smallest side length equal to 256. We include random horizontal flips, but omit
random RGB color shift. We subtract the mean RGB values, computed on the train set, from each
channel in an image. For testing, we use the center 224×224 crop from validation images rescaled to
have smallest side 256. We train for 70 total epochs using a batch size of 256 and an initial learning
rate of 0.01. We decrease the learning rate by a factor of 10 after epochs 50 and 60. We use 5 ∗ 10−4
weight decay decoupled from training loss [41], but multiply by the learning rate to match other
implementations. Optimization is done using SGD with momentum 0.9 and cross-entropy loss. We
use dropout [54] with rate 50% for the first two dense layers. We use default TensorFlow weight
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initializations (glorot-uniform [15] for CNN layers) and train on AWS p3.16xlarge instances with
eight NVIDIA Tesla V100 GPUs. We train networks only once for cost considerations.

We create the PCN presented in the main text summary of results by using the input-based trans-
formation for the first two dense layers in the VGG-19 network. We use an effective dimensionality
of 350 and 400 respectively. For PCA statistics, we use the hidden layer activations computed from
the center crops of 50,176 (a multiple of the batch size) training images. We randomly sample a
different set of images for each layer to increase the amount of training data used to create the
PCN. We include dropout with rate 50% on the two compressed layers. For the network presented
in the main text, we perform the transformation after epoch 15 out of 70.
Training ResNet on ImageNet For train set data augmentation, we use the widely adopted
procedure described as the baseline in [23]. Namely, we first randomly crop a region with aspect
ratio sampled in [3/4, 4/3] and area randomly sampled in [8%, 100%]. This procedure is sometimes
referred to as RandomResizedCrop. We then resize the crop to 224 × 224 and perform a random
horizontal flip. The brightness, saturation, and hue are randomly adjusted with coefficients drawn
from [0.6, 1.4]. We also use PCA color augmentation with coefficients sampled from 𝑁 (0, 0.1).
Finally, we perform channel standardization by subtracting the mean RGB values and dividing by
the standard deviations computed across the training data. For validation, we use the center crop
of an image isotropically rescaled to have shorter side length 256.

We use the training procedure introduced in the original paper [22]. We train for 90 total epochs,
use a batch size of 256, and an initial learning rate of 0.1. We drop the learning rate by a factor of 10
after epochs 30 and 60. We use SGD with momentum 0.9, cross-entropy loss, and 𝐿2 regularization
with coefficient 5 ∗ 10−5. When multiplied by two in the derivative of the loss function, this 𝐿2
penalty equals the 1∗10−4 weight decay used in other implementations. We do not use weight decay
for batch normalization parameters. For convolution layers, we use he-normal initialization [21].
Following common practice, we initialize 𝛾 in the final batch normalization of a residual block with
zeros instead of ones and use label smoothing with coefficient 0.1. We train on AWS p3.16xlarge
instances with eight NVIDIA Tesla V100 GPUs. We train networks only once for cost considerations.

For theWideResNet-50-PCN, we transform all convolutional layers in stage four of aWideResNet-
50 using the input-based transformation. We use an effective dimensionality of 512 for transformed
layers. For ResNet-50-PCN0 we use the input-based transformation for all convolutional layers in
stage four with the following effective dimensionalities: We do not compress the first two convolu-
tions which take as input activations from the previous stage; We use an effective dimensionality of
1024 for the first convolution in blocks two and three; All others use an effective dimensionality of
432. For Resnet-50-PCN1 the effective dimensionalities are similar: We use 768 and 320 respectively.
For ResNet-50-PCN2 we do compress the first two convolutions using an effective dimensionality
of 512. Other layers are compressed as above using 768 and 256 as the effective dimensionalities
respectively. Finally, for ResNet-50-PCN3 we compress stage four as in PCN2 using 256 for the first
two convolutions, 512 for the first convolution in blocks two and three, and 256 elsewhere. We also
compress the convolutions in stage three as follows: The first convolution of blocks two through
six uses an effective dimensionality of 256. All other convolutions use an effective dimensionality
of 128. To compute PCA statistics, we use the center crops of training images isotropically rescaled
to shorter side length 256. We use 50,176 (a multiple of the batch size) random images for each
layer. Since the hidden layer activations occupy significant GPU memory, once a batch of images
reaches the hidden layer of interest, we downsample using spatial average pooling and use depth
vectors from the smaller images for PCA.
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